Konvergenz mit epsilon-n0 Def. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:24 Di 14.06.2011 | Autor: | Trolli |
Aufgabe | Ab welchem Index [mm] n_0\in\IN [/mm] gilt [mm] |a_n|<\varepsilon [/mm] mit [mm] \varepsilon =10^{-1},10^{-3},10^{-5}?
[/mm]
[mm] a_n=\bruch{n}{2n+1}-\bruch{1}{2} [/mm] |
Hallo,
würde gerne wissen ob das so in Ordnung ist bzw. wie ich es besser machen kann ;)
Habe erstmal den Grenzwert bestimmt:
[mm] \limes_{n\to\infty}\bruch{n}{2n+1}-\bruch{1}{2}=\limes_{n\to\infty}\bruch{n}{n(2+\bruch{1}{n})}-\bruch{1}{2}=\limes_{n\to\infty}\bruch{1}{(2+\bruch{1}{n})}-\bruch{1}{2}=\bruch{1}{2}-\bruch{1}{2}=0
[/mm]
Jetzt kommt die [mm] \varepsilon-n_0 [/mm] Definition:
[mm] $\forall\varepsilon [/mm] >0 [mm] \exists n_0\in\IN \forall n>n_0: |a_n-a|<\varepsilon$
[/mm]
[mm] |a_n-a|=|a_n-0|=\left|\frac{n}{2n+1}-\frac{1}{2}\right|=\left|\frac{-1}{4n+2}\right|=\frac{|-1|}{|4n+2|}
[/mm]
[mm] =\frac{1}{4n+2}<\frac{1}{4n}<\frac{1}{4n_0}<\varepsilon
[/mm]
?Darf ich die Abschätzung hier so machen?
Nun habe ich für [mm] \varepsilon [/mm] die vorgebenen Werte eingesetzt:
für [mm] \varepsilon=10^{-1}: \frac{1}{4n_0}<0,1 \Rightarrow n_0>40
[/mm]
für [mm] \varepsilon=10^{-3}: \frac{1}{4n_0}<0,001 \Rightarrow n_0>4000
[/mm]
für [mm] \varepsilon=10^{-5}: \frac{1}{4n_0}<0,00001 \Rightarrow n_0>400000
[/mm]
|
|
|
|
Hallo Trolli!
Ja, Du darfst diese Abschätzung machen. Aber sie erscheint mir hier unnötig. Zumal Deine jeweiligen Ergebnisse für [mm] $n_0$ [/mm] zu ungenau werden.
Die Ungleichung [mm] $\bruch{1}{4*n_0+2} [/mm] \ < \ [mm] \varepsilon$ [/mm] kann man doch schnell und eindeutig nach [mm] $n_0 [/mm] \ > \ ...$ umstellen.
Gruß vom
Roadrunner
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:38 Di 14.06.2011 | Autor: | Trolli |
> Hallo Trolli!
>
>
> Ja, Du darfst diese Abschätzung machen. Aber sie erscheint
> mir hier unnötig. Zumal Deine jeweiligen Ergebnisse für
> [mm]n_0[/mm] zu ungenau werden.
>
> Die Ungleichung [mm]\bruch{1}{4*n_0+2} \ < \ \varepsilon[/mm] kann
> man doch schnell und eindeutig nach [mm]n_0 \ > \ ...[/mm]
> umstellen.
>
Ok, dann lasse ich die eine Abschätzung weg.
Dann hab ich für [mm] \varepsilon=10^{-1}:
[/mm]
[mm] \bruch{1}{4n_0+2}<0,1 \Rightarrow n_0>2
[/mm]
usw.
So hast du es doch gemeint oder?
|
|
|
|
|
Hallo nochmal,
> > Hallo Trolli!
> >
> >
> > Ja, Du darfst diese Abschätzung machen. Aber sie erscheint
> > mir hier unnötig. Zumal Deine jeweiligen Ergebnisse für
> > [mm]n_0[/mm] zu ungenau werden.
> >
> > Die Ungleichung [mm]\bruch{1}{4*n_0+2} \ < \ \varepsilon[/mm] kann
> > man doch schnell und eindeutig nach [mm]n_0 \ > \ ...[/mm]
> > umstellen.
> >
> Ok, dann lasse ich die eine Abschätzung weg.
>
> Dann hab ich für [mm]\varepsilon=10^{-1}:[/mm]
> [mm]\bruch{1}{4n_0+2}<0,1 \Rightarrow n_0>2[/mm]
>
> usw.
>
> So hast du es doch gemeint oder?
Ja, so ist es gemeint!
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:42 Di 14.06.2011 | Autor: | Trolli |
Danke.
|
|
|
|
|
Ergänzend:
> Ab welchem Index [mm]n_0\in\IN[/mm] gilt [mm]|a_n|<\varepsilon[/mm] mit
> [mm]\varepsilon =10^{-1},10^{-3},10^{-5}?[/mm]
>
> [mm]a_n=\bruch{n}{2n+1}-\bruch{1}{2}[/mm]
>
> Hallo,
>
> würde gerne wissen ob das so in Ordnung ist bzw. wie ich
> es besser machen kann ;)
>
> Habe erstmal den Grenzwert bestimmt:
>
> [mm]\limes_{n\to\infty}\bruch{n}{2n+1}-\bruch{1}{2}=\limes_{n\to\infty}\bruch{n}{n(2+\bruch{1}{n})}-\bruch{1}{2}=\limes_{n\to\infty}\bruch{1}{(2+\bruch{1}{n})}-\bruch{1}{2}=\bruch{1}{2}-\bruch{1}{2}=0[/mm]
>
> Jetzt kommt die [mm]\varepsilon-n_0[/mm] Definition:
> [mm]\forall\varepsilon >0 \exists n_0\in\IN \forall n>n_0: |a_n-a|<\varepsilon[/mm]
>
> [mm]|a_n-a|=|a_n-0|=\left|\frac{n}{2n+1}-\frac{1}{2}\right|=\left|\frac{-1}{4n+2}\right|=\frac{|-1|}{|4n+2|}[/mm]
> [mm]=\frac{1}{4n+2}<\frac{1}{4n}<\frac{1}{4n_0}<\varepsilon[/mm]
>
> ?Darf ich die Abschätzung hier so machen?
Ja, damit findest du ein passendes [mm]n_0[/mm], aber dann nicht das kleinste, für das es passt...
>
>
> Nun habe ich für [mm]\varepsilon[/mm] die vorgebenen Werte
> eingesetzt:
> für [mm]\varepsilon=10^{-1}: \frac{1}{4n_0}<0,1 \Rightarrow n_0>40[/mm]
Hier und im weiteren hast du dich verrechnet, wenn meine blutunterlaufenen Augen das richtig sehen:
[mm]\frac{1}{4n_0}<\frac{1}{10}\gdw 4n_0>10\gdw n_0>2,5[/mm], also [mm]n_0=3[/mm]
usw.
>
> für [mm]\varepsilon=10^{-3}: \frac{1}{4n_0}<0,001 \Rightarrow n_0>4000[/mm]
>
> für [mm]\varepsilon=10^{-5}: \frac{1}{4n_0}<0,00001 \Rightarrow n_0>400000[/mm]
>
Gruß
schachuzipus
|
|
|
|