matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz und Grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz und Grenzwert
Konvergenz und Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz und Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 19.11.2010
Autor: Big_Head78

Aufgabe
Aufgabenstellung wie oben.

[mm] b_{n}= b_{n}= \summe_{k=1}^{n} \bruch{1}{k*(k+1)} [/mm]


Ist das Ergebnis hier nicht einfach:

[mm] b_{n}= \summe_{k=1}^{n} \bruch{1}{k*(k+1)}= \bruch{1}{2}*n [/mm] ?

        
Bezug
Konvergenz und Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Fr 19.11.2010
Autor: leduart

Hallo
a) es ist nicht 1/2 , das ist ja nur der erste Summand, dann kommen noch viele!
b) wenn es 1/2 wäre müsstest du das beweisen.
c) mach ne Partialbruchzerlegung, d.h. schreib das als A/k+B/(k+1) und bestimme A und B
Dann sieht man das Ergebnis -mit Beweis- schnell
Gruss leduart


Bezug
                
Bezug
Konvergenz und Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Fr 19.11.2010
Autor: Big_Head78

Ich bin mir gerade unsicher, aber der bruch ist doch konstant oder? Und dann summiert man die konst. n-mal.


[mm] \summe_{k=1}^{n}= \bruch{1}{k*(k+1)}= \summe_{k=1}^{n} \bruch{1}{2}= \bruch{1}{2}*n [/mm]

Bezug
                        
Bezug
Konvergenz und Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Fr 19.11.2010
Autor: schachuzipus

Hallo nochmal,

> Ich bin mir gerade unsicher, aber der bruch ist doch
> konstant oder? [notok]

Was bewegt dich zu dieser absurden Annahme?

Für [mm]k=1[/mm] erhältst du [mm]\frac{1}{2}[/mm], für [mm]k=2[/mm] erhältst du [mm]\frac{1}{2\cdot{}3}=\frac{1}{6}[/mm]

Und das wird alles summiert ...

> Und dann summiert man die konst. n-mal. [notok]
>
>
> [mm]\summe_{k=1}^{n}= \bruch{1}{k*(k+1)}= \summe_{k=1}^{n} \bruch{1}{2}= \bruch{1}{2}*n[/mm]

Grober Unfug.

Beherzige leduarts Tipp!

LG

schachuzipus


Bezug
                                
Bezug
Konvergenz und Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:21 Sa 20.11.2010
Autor: Big_Head78

Neuer Versuch.

Ich komme dann auf:

1=(k+1)*A+k*B=k(A+B)+A
[mm] \Rightarrow [/mm]  A+B=0 [mm] \wedge [/mm] A=0 [mm] \Rightarrow [/mm] B=-1

also:

[mm] \summe_{k=1}^{n} \bruch{1}{k*(k+1)}=\summe_{k=1}^{n}( \bruch{1}{k}- \bruch{1}{k+1}) [/mm]

Ich habe die ersten acht Folgenglieder bestimmt und vermute als GW 0,7, weiss aber nicht, wie ich das jetzt zeigen kann.
Ein kleiner Hinweis würde mir bestimmt helfen.

Bezug
                                        
Bezug
Konvergenz und Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 Sa 20.11.2010
Autor: schachuzipus

Hallo nochmal,


> Neuer Versuch.
>  
> Ich komme dann auf:
>  
> 1=(k+1)*A+k*B=k(A+B)+A
>  [mm]\Rightarrow[/mm]  A+B=0 [mm]\wedge[/mm] A=0 [mm]\Rightarrow[/mm] B=-1

kleiner Verschreiber: [mm]A=\red{1}[/mm]

>  
> also:
>  
> [mm]\summe_{k=1}^{n} \bruch{1}{k*(k+1)}=\summe_{k=1}^{n}( \bruch{1}{k}- \bruch{1}{k+1})[/mm] [ok]
>  
> Ich habe die ersten acht Folgenglieder bestimmt und vermute
> als GW 0,7, [notok] weiss aber nicht, wie ich das jetzt zeigen
> kann.

Der GW ist 1!

Es ist [mm]\sum\limits_{k=1}^{\infty}a_k=\lim\limits_{n\to\infty}\sum\limits_{k=1}^{n}a_k[/mm]

Hier ziehe die Summe auseinender:

[mm]\sum\limits_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right) \ = \ \sum\limits_{k=1}^n\frac{1}{k} \ - \ \sum\limits_{k=1}^{n}\frac{1}{k+1}[/mm]

Nun eine Indexverschiebung an der hinteren Summe, so dass auch der Summand [mm]\frac{1}{k}[/mm] dasteht.

Erhöhen wir den Laufindex an der Summe um 1 und erniedrigen ihn als Ausgleich in der Summe um 1:

[mm]= \ \sum\limits_{k=1}^n\frac{1}{k} \ - \ \sum\limits_{k=2}^{n+1}\frac{1}{k}[/mm]

Nun kürzen sich fast alle Summanden weg, dies ist eine nette Teleskopsumme.

Was bleibt? Und wogegen strebt es für [mm]n\to\infty[/mm]?

>  Ein kleiner Hinweis würde mir bestimmt helfen.

Gruß

schachuzipus


Bezug
                                                
Bezug
Konvergenz und Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 Sa 20.11.2010
Autor: Big_Head78

Ausrechnen bringt mich zu:

[mm] \bruch{1}{1}+ \bruch{1}{2}+ \bruch{1}{3}+...+ \bruch{1}{n}-( \bruch{1}{2}+ \bruch{1}{3}+...+ \bruch{1}{n}+ \bruch{1}{n+1}) [/mm]
= [mm] \bruch{1}{1}- \bruch{1}{n+1} [/mm]

Also:

[mm] \sum\limits_{k=1}^{\infty}a_k=\lim\limits_{n\to\infty}\sum\limits_{k=1}^{n}a_k= \limes_{n\rightarrow\infty}( \bruch{1}{1}- \bruch{1}{n+1})=1 [/mm]

So richtig?




Bezug
                                                        
Bezug
Konvergenz und Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 Sa 20.11.2010
Autor: schachuzipus

Hallo,


> Ausrechnen bringt mich zu:
>  
> [mm]\bruch{1}{1}+ \bruch{1}{2}+ \bruch{1}{3}+...+ \bruch{1}{n}-( \bruch{1}{2}+ \bruch{1}{3}+...+ \bruch{1}{n}+ \bruch{1}{n+1})[/mm]
>  
> = [mm]\bruch{1}{1}- \bruch{1}{n+1}[/mm]

[ok]

>  
> Also:
>  
> [mm]\sum\limits_{k=1}^{\infty}a_k=\lim\limits_{n\to\infty}\sum\limits_{k=1}^{n}a_k= \limes_{n\rightarrow\infty}( \bruch{1}{1}- \bruch{1}{n+1})=1[/mm] [ok]
>  
> So richtig?

Ja!

Gruß

schachuzipus

>
>  


Bezug
                                                                
Bezug
Konvergenz und Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Sa 20.11.2010
Autor: Big_Head78

Aufgabe
Aufgabenstellung bleibt.

[mm] c_{n}= \bruch{n^3}{2^n} [/mm]

Hinweis: [mm] 2^n [/mm] > [mm] n^4 [/mm] für n [mm] \in \IN, [/mm] n [mm] \ge16 [/mm]

meine Idee:

[mm] \bruch{n^3}{2^n}= \bruch{n^4}{n*2^n}= \bruch{n^4}{2^n}* \bruch{1}{n} [/mm]

für n [mm] \ge16 [/mm] gilt:
[mm] \bruch{n^4}{2^n} \le1 \Rightarrow \bruch{1}{n}* \bruch{n^4}{2^n} \le1* \bruch{1}{n}= \bruch{1}{n} [/mm]

also:
[mm] \limes_{n\rightarrow\infty} \bruch{n^3}{2^n}= \limes_{n\rightarrow\infty} \bruch{n^4}{n*2^n}= \limes_{n\rightarrow\infty} \bruch{1}{n}=0 [/mm]

Richtig so?

Bezug
                                                                        
Bezug
Konvergenz und Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Sa 20.11.2010
Autor: schachuzipus

Hallo,

bitte für neue Aufgaben neue threads erstellen.


> Aufgabenstellung bleibt.
>  
> [mm]c_{n}= \bruch{n^3}{2^n}[/mm]
>  
> Hinweis: [mm]2^n[/mm] > [mm]n^4[/mm] für n [mm]\in \IN,[/mm] n [mm]\ge16[/mm]
>  meine Idee:
>  
> [mm]\bruch{n^3}{2^n}= \bruch{n^4}{n*2^n}= \bruch{n^4}{2^n}* \bruch{1}{n}[/mm]
>  
> für n [mm]\ge16[/mm] gilt:
> [mm]\bruch{n^4}{2^n} \le1 \Rightarrow \bruch{1}{n}* \bruch{n^4}{2^n} \le1* \bruch{1}{n}= \bruch{1}{n}[/mm] [ok]
>  
> also:
>  [mm]\limes_{n\rightarrow\infty} \bruch{n^3}{2^n}= \limes_{n\rightarrow\infty} \bruch{n^4}{n*2^n}= \limes_{n\rightarrow\infty} \bruch{1}{n}=0[/mm]
>  
> Richtig so?

Erstmal nur [mm]\le 0[/mm]

Andererseits ist offensichtlich [mm]0\le\frac{n^3}{2^n}[/mm]

Also [mm]0 \ \le \ \frac{n^3}{2^n} \ \le \ \frac{1}{n}[/mm]

Damit nach Sandwich-Lemma ...

Gruß

schachuzipus


Bezug
                                                                                
Bezug
Konvergenz und Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Sa 20.11.2010
Autor: MontBlanc

hallo,

hilft es denn mit einer divergenten majorante abzuschätzen oder sprechen wir von folgen ?

lg

Bezug
                                                                                        
Bezug
Konvergenz und Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:34 Sa 20.11.2010
Autor: schachuzipus

Hallo,


> hallo,
>  
> hilft es denn mit einer divergenten majorante abzuschätzen

Nee, hilft nix ...

> oder sprechen wir von folgen ?

k.A.

Wenn es um die KOnvergenz/Divergenz der Reihe [mm]\sum\limits_{n=1}^{\infty}\frac{n^3}{2^n}[/mm] geht, würde ich den Tipp vergessen und das Wurzelkriterium hernehmen ...


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]