Konvergenz und Grenzwerte < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Weisen Sie die Konvergenz der folgenden Folge nach und berechnen Sie deren Grenzwert:
[mm]a_0 := \alpha, \qquad a_1 := \beta, \qquad a_{n+1} := \bruch{1}{2}(a_n + a_{n-1}) \qquad (n \geq 1)[/mm]
wobei [mm]\alpha, \beta \in \IR[/mm] zwei fest gewählte reellle Zahlen sind. |
Zusätzlich zur Aufgabe habe ich den Tipp bekommen, dass zuerst die Gültigkeit der folgenden Formel gezeigt werden sollte:
[mm]a_n = \bruch{1}{3}(\alpha + 2\beta) + \bruch{2}{3}(\alpha - \beta) * \bruch{(-1)^n}{2^n}[/mm]
Mein Vorhaben ist nun:
Ich schließe per vollständiger Induktion von [mm]a_n \to a_{n+1}[/mm] um [mm]a_{n}[/mm] zu zeigen. Dann zeige ich den Grenzwert von [mm]a_{n+1}[/mm] . Dann zeige ich die Monotonie der Folge und somit letztendlich deren Konvergenz.
Induktionsschritt (IA und IV spare ich mir hier jetzt mal)
[mm]n \to n+1[/mm]
[mm]a_{n+1} = \bruch{1}{3}(\alpha + 2\beta) + \bruch{2}{3}(\alpha - \beta) * \bruch{(-1)^{n+1}}{2^{n+1}}[/mm]
[mm]a_{n+1} = \bruch{1}{3}\alpha + \bruch{2}{3}\beta + \left ( \bruch{2}{3}\alpha - \bruch{2}{3}\beta \right ) * \left (-\bruch{1}{2} \right ) ^{n+1}[/mm]
Jetzt muss dies ja gleich dem [mm]a_{n+1}[/mm] aus der Aufgabenstellung sein. Also setze ich [mm]a_{n}[/mm] in das in der Aufgabenstellung gegebene [mm]a_{n+1}[/mm] ein um die Gleichheit zu prüfen:
[mm]a_{n+1} = \bruch{1}{2} \left ( \left ( \bruch{1}{3} \left ( \alpha + 2\beta \right ) + \bruch{2}{3} \left ( \alpha - \beta \right ) * \bruch{(-1)^n}{2^n} \right ) + \left ( \bruch{1}{3} \left ( \alpha + 2\beta \right ) + \bruch{2}{3} \left ( \alpha - \beta \right ) * \bruch{(-1)^{n-1}}{2^{n-1}} \right ) \right )[/mm]
[mm]= \bruch{1}{2} \left ( \bruch{1}{3} \alpha + \bruch{2}{3} \beta + \left ( \bruch{2}{3} \alpha - \bruch{2}{3} \beta \right ) *\left (- \bruch{1}{2}\right )^n + \bruch{1}{3} \alpha + \bruch{2}{3} \beta + \left ( \bruch{2}{3} \alpha - \bruch{2}{3} \beta \right ) *\left (- \bruch{1}{2}\right )^{n-1} \right )[/mm]
[mm]= \bruch{1}{2} \left ( \bruch{2}{3} \alpha + \bruch{4}{3} \beta + \left ( \bruch{2}{3} \alpha - \bruch{2}{3} \beta \right ) *\left (- \bruch{1}{2}\right )^n + \left ( \bruch{2}{3} \alpha - \bruch{2}{3} \beta \right ) *\left (- \bruch{1}{2}\right )^{n-1} \right )[/mm]
Wie geht's jetzt hier mit der Umformung (innerhalb der äußersten Klammer) weiter? Ich krieg's einfach nicht auf die Reihe …
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:22 Di 13.11.2012 | Autor: | fred97 |
> Weisen Sie die Konvergenz der folgenden Folge nach und
> berechnen Sie deren Grenzwert:
>
> [mm]a_0 := \alpha, \qquad a_1 := \beta, \qquad a_{n+1} := \bruch{1}{2}(a_n + a_{n-1}) \qquad (n \geq 1)[/mm]
>
> wobei [mm]\alpha, \beta \in \IR[/mm] zwei fest gewählte reellle
> Zahlen sind.
>
>
> Zusätzlich zur Aufgabe habe ich den Tipp bekommen, dass
> zuerst die Gültigkeit der folgenden Formel gezeigt werden
> sollte:
>
> [mm]a_n = \bruch{1}{3}(\alpha + 2\beta) + \bruch{2}{3}(\alpha - \beta) * \bruch{(-1)^n}{2^n}[/mm]
>
> Mein Vorhaben ist nun:
> Ich schließe per vollständiger Induktion von [mm]a_n \to a_{n+1}[/mm]
> um [mm]a_{n}[/mm] zu zeigen. Dann zeige ich den Grenzwert von
> [mm]a_{n+1}[/mm] . Dann zeige ich die Monotonie der Folge und somit
> letztendlich deren Konvergenz.
>
>
> Induktionsschritt (IA und IV spare ich mir hier jetzt mal)
> [mm]n \to n+1[/mm]
>
> [mm]a_{n+1} = \bruch{1}{3}(\alpha + 2\beta) + \bruch{2}{3}(\alpha - \beta) * \bruch{(-1)^{n+1}}{2^{n+1}}[/mm]
>
> [mm]a_{n+1} = \bruch{1}{3}\alpha + \bruch{2}{3}\beta + \left ( \bruch{2}{3}\alpha - \bruch{2}{3}\beta \right ) * \left (-\bruch{1}{2} \right ) ^{n+1}[/mm]
>
> Jetzt muss dies ja gleich dem [mm]a_{n+1}[/mm] aus der
> Aufgabenstellung sein. Also setze ich [mm]a_{n}[/mm] in das in der
> Aufgabenstellung gegebene [mm]a_{n+1}[/mm] ein um die Gleichheit zu
> prüfen:
>
> [mm]a_{n+1} = \bruch{1}{2} \left ( \left ( \bruch{1}{3} \left ( \alpha + 2\beta \right ) + \bruch{2}{3} \left ( \alpha - \beta \right ) * \bruch{(-1)^n}{2^n} \right ) + \left ( \bruch{1}{3} \left ( \alpha + 2\beta \right ) + \bruch{2}{3} \left ( \alpha - \beta \right ) * \bruch{(-1)^{n-1}}{2^{n-1}} \right ) \right )[/mm]
>
> [mm]= \bruch{1}{2} \left ( \bruch{1}{3} \alpha + \bruch{2}{3} \beta + \left ( \bruch{2}{3} \alpha - \bruch{2}{3} \beta \right ) *\left (- \bruch{1}{2}\right )^n + \bruch{1}{3} \alpha + \bruch{2}{3} \beta + \left ( \bruch{2}{3} \alpha - \bruch{2}{3} \beta \right ) *\left (- \bruch{1}{2}\right )^{n-1} \right )[/mm]
>
> [mm]= \bruch{1}{2} \left ( \bruch{2}{3} \alpha + \bruch{4}{3} \beta + \left ( \bruch{2}{3} \alpha - \bruch{2}{3} \beta \right ) *\left (- \bruch{1}{2}\right )^n + \left ( \bruch{2}{3} \alpha - \bruch{2}{3} \beta \right ) *\left (- \bruch{1}{2}\right )^{n-1} \right )[/mm]
>
> Wie geht's jetzt hier mit der Umformung (innerhalb der
> äußersten Klammer) weiter? Ich krieg's einfach nicht auf
> die Reihe …
>
Ich rate Dir folgendes: setze von Anfang an [mm] a:=\bruch{1}{3}(\alpha [/mm] + [mm] 2\beta) [/mm] und b:= [mm] \bruch{2}{3}(\alpha [/mm] - [mm] \beta) [/mm]
Dann wird die ganze Rechnerei sehr übersichtlich.
FRED
|
|
|
|
|
Hallo Fred,
> Ich rate Dir folgendes: setze von Anfang an
> [mm]a:=\bruch{1}{3}(\alpha[/mm] + [mm]2\beta)[/mm] und b:=
> [mm]\bruch{2}{3}(\alpha[/mm] - [mm]\beta)[/mm]
>
> Dann wird die ganze Rechnerei sehr übersichtlich.
das ist eine gute Idee. Ich erhalte dann nach einigem Umformen:
[mm]a_{n+1} = \bruch{1}{3}\alpha + \bruch{2}{3}\beta + \left ( \bruch{1}{3}\alpha - \bruch{1}{3}\beta \right )\left ( -\bruch{1}{2} \right )^n + \left ( \bruch{1}{3}\alpha - \bruch{1}{3}\beta \right )\left ( -\bruch{1}{2} \right )^{n-1}[/mm]
Das ist offensichtlich dasselbe wie
[mm]a_{n+1} = \bruch{1}{3}\alpha + \bruch{2}{3}\beta + \left ( \bruch{2}{3}\alpha - \bruch{2}{3}\beta \right ) \left (- \bruch{1}{2} \right )^{n+1}[/mm]
(Ich weiß, dass das so ist – aber nicht, warum: Welcher Unformungsschritt fehlt hier zwischen noch?)
Also gilt für den Grenzwert:
[mm]\limes_{n\rightarrow\infty} \bruch{1}{3}\alpha + \bruch{2}{3}\beta + \underbrace{\left ( \bruch{2}{3}\alpha - \bruch{2}{3}\beta \right )\left (- \bruch{1}{2} \right )^{n+1}}_{\mbox{Nullfolge, da } \limes_{n\rightarrow\infty} \left (- \bruch{1}{2} \right )^{n+1} = 0} = \bruch{1}{3}\alpha + \bruch{2}{3}\beta[/mm]
Monotonie:
[mm]a_{n+1} < a_n[/mm]
[mm]\bruch{1}{3}\alpha + \bruch{2}{3}\beta + \left ( \bruch{2}{3}\alpha - \bruch{2}{3}\beta \right ) \left (- \bruch{1}{2} \right )^{n+1} < \bruch{1}{3}\alpha + \bruch{2}{3}\beta + \left ( \bruch{2}{3}\alpha - \bruch{2}{3}\beta \right ) \left (- \bruch{1}{2} \right )^{n}[/mm]
[mm]\gdw \bruch{1}{3}\alpha + \bruch{2}{3}\beta + \left ( \bruch{2}{3}\alpha - \bruch{2}{3}\beta \right ) \left (- \bruch{1}{2} \right )^{n} \left (- \bruch{1}{2} \right ) < \bruch{1}{3}\alpha + \bruch{2}{3}\beta + \left ( \bruch{2}{3}\alpha - \bruch{2}{3}\beta \right ) \left (- \bruch{1}{2} \right )^{n}[/mm]
Auf der linken Seite der Ungleichung taucht mit [mm]\left (- \bruch{1}{2} \right )[/mm] ein zusätzlicher, konstant negativer Faktor auf. Dadurch ist die Ungleichung stets wahr.
Stimmt das so?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:55 Mi 14.11.2012 | Autor: | leduart |
Hallo
für das erste Problem klammer hinten [mm] (-1/2)^{-1} [/mm] aus.
2, keine Monotonie. setz in deiner Beh mal n gerade, mal ungerade ein .schreib besser [mm] (-1)^n*1/2^n [/mm] dann wird dein Fehler klarer!
du hast eine alternierende Folge!
Gruss leduart
|
|
|
|