matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieKonvergenz uneigentl. Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Konvergenz uneigentl. Integral
Konvergenz uneigentl. Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz uneigentl. Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mo 18.06.2012
Autor: Peao

Aufgabe
Konvergiert [mm] \integral_{-\pi/2}^{0}{\bruch{(cos(x)sin(x))^{2}}{x^{2}} dx} [/mm]

Hallo!

ich habe hier zunächst den Zähler mit der binomischen Formel umgeformt:

1-2sin(x)cos(x) Das wird maximal 2.

Habe nun versucht eine integrierbare Majorante zufinden, allerdings stört das [mm] x^{2} [/mm] im Nenner. Ich finde keine Möglichkeit die Nullstelle zu umgehen.

Hat jemand einen Tip, wie ich hier ansetzen kann?

        
Bezug
Konvergenz uneigentl. Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Mo 18.06.2012
Autor: Leopold_Gast

Das Integral ist im engeren Sinn gar nicht uneigentlich. Bekanntermaßen ist [mm]\frac{\sin x}{x}[/mm] bei [mm]x=0[/mm] mit dem Wert 1 stetig ergänzbar. Und wenn man quadriert ...

Bezug
                
Bezug
Konvergenz uneigentl. Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Mo 18.06.2012
Autor: Peao


> Das Integral ist im engeren Sinn gar nicht uneigentlich.
> Bekanntermaßen ist [mm]\frac{\sin x}{x}[/mm] bei [mm]x=0[/mm] mit dem Wert 1
> stetig ergänzbar. Und wenn man quadriert ...

Leider sehe ich hier nicht, wie mich das weiterbringen könnte. Das man das stetig ergänzen kann, ist mir klar.

Das so das Integral von [mm] \bruch{sin(x)}{x} [/mm]  berechnet werden kann, da der Flächeninhalt endlich wird leuchtet mir auch ein. Nur hätte ich schon Probleme [mm] \bruch{sin(x)}{x} [/mm] zu integrieren.

Und wie mich das auf eine Lösung für meine Aufgabe bringt, erschließt sich mir auch noch nicht.

Gruß



Bezug
                        
Bezug
Konvergenz uneigentl. Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Mo 18.06.2012
Autor: Leopold_Gast

Die Aufgabe ist bereits gelöst. Da der Integrand (mit der stetigen Ergänzung) stetig ist, existiert das Integral. Das war's.

Bezug
                                
Bezug
Konvergenz uneigentl. Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:51 Mo 18.06.2012
Autor: Peao

Danke!
So habe ich das noch gar nicht betrachtet, dass man einfach die Stetigkeit des Integranden zeigt und nicht eine Grenzwertbetrachtung anstellt....

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]