matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKonvergenz uneigentl Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Konvergenz uneigentl Integrale
Konvergenz uneigentl Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz uneigentl Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Do 30.04.2009
Autor: reason

hallöle
da ich gestern bereits sehr wertvolle tips bekommen habe, heute ein weiterer versuch.
ich soll die konvergenz des integrals [mm] \integral_{0}^{\infty}{x/(1-e^x) dx} [/mm] abschätzen nur finde ich keine vergleichbare funktion über die ich abschätzen kann bzw keine konvergente majorante zum integral [mm] \integral_{0}^{\infty}{x/(e^x -1) dx} [/mm] das ich einfach mal umgedreht habe damits schöner aussieht..
hat jemand einen ansatz?
danke für die mühe


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Konvergenz uneigentl Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Do 30.04.2009
Autor: Al-Chwarizmi


>  ich soll die konvergenz des integrals
> [mm]\integral_{0}^{\infty}{x/(1-e^x) dx}[/mm] abschätzen nur finde
> ich keine vergleichbare funktion über die ich abschätzen
> kann bzw keine konvergente majorante zum integral
> [mm]\integral_{0}^{\infty}{x/(e^x -1) dx}[/mm] das ich einfach mal
> umgedreht habe damits schöner aussieht..



Hallo reason,

Für alle positiven x ist  $\ [mm] e^x>\ x^2+1$ [/mm] !

Damit lässt sich eine konvergente Majorante konstruieren.

LG

Bezug
                
Bezug
Konvergenz uneigentl Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Do 30.04.2009
Autor: reason

danke für den schnellen rat.
ich hab mal eingesetzt und krieg aber das raus:
[mm] e^x [/mm] > [mm] x^2 [/mm] +1   [mm] \Rightarrow \bruch{1}{e^x} [/mm] < [mm] \bruch{1}{x^2+1} [/mm]  
[mm] \Rightarrow \bruch{x}{e^x} [/mm] < [mm] \bruch{x}{x^2+1} \Rightarrow \bruch{x}{e^x -1} [/mm] < [mm] \bruch{x}{x^2} [/mm] = [mm] \bruch{1}{x} [/mm]
ergibt  [mm] \integral_{1}^{\infty}{\bruch{1}{x} dx} [/mm] = ln(x)|1 bis unendlich
= [mm] ln(\infty)-ln(1) [/mm]  und der [mm] ln(\infty) [/mm] geht gegen unendlich [verwirrt]
wo vertue ich ich denn da?

Bezug
                        
Bezug
Konvergenz uneigentl Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Do 30.04.2009
Autor: pelzig

Ja dann probier doch mal die naheliegende Abschätzung [mm] e^x>1+x^3 [/mm]

Gruß, Robert

Bezug
                        
Bezug
Konvergenz uneigentl Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Do 30.04.2009
Autor: Al-Chwarizmi

Oh, Entschuldigung - das war ein kleiner Irrtum.

Betrachtung der Exponentialreihe

        $\ [mm] e^x=\ 1+x+\bruch{x^2}{2\,!}+\bruch{x^3}{3\,!}+\bruch{x^4}{4\,!}+\bruch{x^5}{5\,!}+\,......$ [/mm]

zeigt aber z.B. auch, dass

        $\ [mm] e^x>\ 1\,+\,\bruch{x^3}{3\,!}\ [/mm] =\ [mm] 1\,+\,\bruch{x^3}{6}$ [/mm]

für alle positiven x .


LG     Al



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]