matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz unendliche Reihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz unendliche Reihe
Konvergenz unendliche Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz unendliche Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:46 Mo 26.01.2009
Autor: stevies

Aufgabe
Konvergiert die unendliche Reihe:

[mm] \summe_{k=2}^{\infty} \bruch{log ( 1 + \bruch{1}{k})}{log ( k^{log(k+1)}} [/mm]

Man berechne im Falle der Konvergenz den Reihenwert

Meine erste Frage hier wäre mit welchem Konvergenzkriterium ich überhaupt zeigen kann, dass diese Reihe konvergiert. Bin da gerade etwas ratlos weil mich diese ganze Logarithmen doch etwas stark verwirren. Als erster Ansatz würde mir also erst einmal genügen welches Kriterium ich hier anwenden könnte, weil ich gerade nicht den kleinsten Schimmer habe welches sich hier eigenen würde (Hospital, Quotienten oder eine passende Majorante?)

Bin für jeden Tipp dankbar

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz unendliche Reihe: umformen
Status: (Antwort) fertig Status 
Datum: 00:02 Di 27.01.2009
Autor: Loddar

Hallo stevies!


Bevor ich hier an irgendwelche Konvergenzkriterien denke, würde ich erstmal schön gemäß MBLogarithmusgesetzen umformen:
[mm] $$\bruch{\log \left( 1 + \bruch{1}{k}\right)}{\log \left( k^{\log(k+1)}\right)} [/mm] \ = \ [mm] \bruch{\log \left(\bruch{k+1}{k}\right)}{\log \left( k^{\log(k+1)}\right)} [/mm] \ = \ [mm] \bruch{\log (k+1)-\log(k)}{\log(k+1)*\log (k)} [/mm] \ = \ [mm] \bruch{\log (k+1)}{\log(k+1)*\log (k)}-\bruch{\log(k)}{\log(k+1)*\log (k)} [/mm] \ = \ [mm] \bruch{1}{\log (k)}-\bruch{1}{\log(k+1)}$$ [/mm]

Gruß
Loddar

Bezug
        
Bezug
Konvergenz unendliche Reihe: Teleskopsumme
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:23 Di 27.01.2009
Autor: Loddar

Hallo stevies!


Für Konvergenzverhalten und Grenzwert solltest Du ma Richtung "Teleskopsumme" denken.


Gruß
Loddar


Bezug
                
Bezug
Konvergenz unendliche Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:27 Di 27.01.2009
Autor: schachuzipus


;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]