matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz von Folge
Konvergenz von Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:30 Sa 01.07.2006
Autor: g_hub

Aufgabe
Die Folge [mm] (x_n) \subset \IR [/mm] sei zu gegebenem [mm] x_0\in\IR [/mm] definiert über [mm] x_{n+1}=cos(x_n). [/mm] Zeigen Sie, dass diese Folge für jedes beliebige [mm] x_0 [/mm] konvergiert.

Sorry, dass ich mit dieser einfachen Frage nerve... aber irgendwie komm ich nicht weiter.
Meine Idee:

Banachschen Fixpunktsatz anwenden.
Betrachte [mm] \Phi [/mm] : [mm] [-1,1]\to [/mm] [-1,1] mit [mm] x\mapsto [/mm] cos x und zeige, dass [mm] \Phi [/mm] (stark) kontraktiv.

Das letzte gelingt mir irgendwie nicht, hilft mir jemand?
Außerdem: Ich meine mich zu erinnern, dass cos lipschitz mit Konstante 1 ist, weiß aber den Beweis dafür nicht mehr, kennt den einer?

Danke schonmal

        
Bezug
Konvergenz von Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 10:03 Sa 01.07.2006
Autor: mathemaduenn

Hallo g_hub,

> Banachschen Fixpunktsatz anwenden.
>  Betrachte [mm]\Phi[/mm] : [mm][-1,1]\to[/mm] [-1,1] mit [mm]x\mapsto[/mm] cos x und
> zeige, dass [mm]\Phi[/mm] (stark) kontraktiv.

[daumenhoch]  

> Das letzte gelingt mir irgendwie nicht, hilft mir jemand?
>  Außerdem: Ich meine mich zu erinnern, dass cos lipschitz
> mit Konstante 1 ist, weiß aber den Beweis dafür nicht mehr,
> kennt den einer?

Das folgt aus dem Mittelwertsatz und der Tatsache das die Ableitung des cos kleiner 1 ist. Der Mittelwertsatz und die Abschätzung der Ableitung hilft Dir auch beim Auffinden der richtigen L-Konstante. (Denn 1 reicht ja noch nicht.)
Alles klar?
viele grüße
mathemaduenn

Bezug
                
Bezug
Konvergenz von Folge: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:15 Sa 01.07.2006
Autor: g_hub

Irgendwas stimmt noch nicht....
wenn ich einfach abschätze
|cos' x|=|-sin x|=|sin [mm] x|\le [/mm] sin 1<1
kann ich dann einfach
[mm] \bruch{|cos x - cos y|}{|x-y|}\le [/mm] sin 1
schließen?
Wenn ja, wofür brauche ich dann den MWS?

Bezug
                        
Bezug
Konvergenz von Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Sa 01.07.2006
Autor: mathemaduenn

Hallo g_hub,
> Irgendwas stimmt noch nicht....
>  wenn ich einfach abschätze
>  |cos' x|=|-sin x|=|sin [mm]x|\le[/mm] sin 1<1
>  kann ich dann einfach
>  [mm]\bruch{|cos x - cos y|}{|x-y|}\le[/mm] sin 1
>  schließen?
>  Wenn ja, wofür brauche ich dann den MWS?

Na damit Du das einfach schließen kannst benutzt Du den MWS:
[mm] f(x)-f(y)=f'(\xi)*(x-y) [/mm]
[mm] |f(x)-f(y)|=|f'(\xi)|*|x-y|\le sup|f'(\xi)|*|x-y| [/mm]
viele Grüße
mathemaduenn


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]