matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz von Folgen
Konvergenz von Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:41 So 02.07.2006
Autor: xsara

Aufgabe
Es sei [mm] (a_n)_n_ \ge_0 [/mm] eine monoton fallende relle Nullfolge in [mm] \IR. [/mm] Beweisen Sie:  [mm] \summe_{n=0}^{\infty} i^na_n [/mm] konvergiert in [mm] \IC. [/mm]

Hallo,

wie kann man dies für [mm] \IC [/mm] beweisen?

In [mm] \IR [/mm] gilt,
1. dass jede monotone Folge konvergiert bzw. eigentlich konvergiert,
2. es für die Konvergenz eine notwendige aber nicht hinreichende Bedinung ist, dass [mm] a_n [/mm] eine Nullfolge ist und
3. [mm] \summe_{n=1}^{\infty} (-1)^na_n [/mm] konvergiert, wenn [mm] a_n [/mm] eine monoton fallende Nullfolge ist.


[mm] \summe_{n=0}^{\infty} i^na_n [/mm] kann man doch alternierend bzgl. des Real- und Imaginärteils auffassen, wobei die Folgen des Real- und Imaginärteils alternieren.
Für
n=4k gilt [mm] \summe_{n=0}^{\infty} i^na_n [/mm] = [mm] a_n [/mm]
n=4k+1 gilt [mm] \summe_{n=0}^{\infty} i^na_n [/mm] = [mm] ia_n [/mm]
n=4k+2 gilt [mm] \summe_{n=0}^{\infty} i^na_n [/mm] = [mm] -a_n [/mm]
n=4k+3 gilt [mm] \summe_{n=0}^{\infty} i^na_n [/mm] = [mm] -ia_n. [/mm]

Stimmt das soweit? Wie kann man die Konvergenz beweisen?

Vielen Dank!

xsara

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 So 02.07.2006
Autor: Hanno

Hallo!

> $ [mm] \summe_{n=0}^{\infty} i^na_n [/mm] $ kann man doch alternierend bzgl. des Real- und Imaginärteils auffassen, wobei die Folgen des Real- und Imaginärteils alternieren.

Eine sehr gute und richtige Idee! [ok]

Wenn mich nicht alles täuscht, denn reicht es zur Konvergenz einer Reihe im Komplexen zu zeigen, dass sowohl die Reihe der Real-, als auch die der Imaginärteile konvergiert. Der Grenzwert der ursprünglichen Reihe besitzt dann den Grenzwert der Realteil-Reihe als Realteil, den der Imaginärteil-Reihe als Imaginärteil.

Wenn du das weißt bzw. bewiesen hast, kannst du die Aufgabe genau so lösen, wie du es vorschlugst: du betrachtest die Folge der Realteile und die der Imaginärteile und wendest auf sie das Leibniz-Kriterium an.

Versuch's mal!


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]