matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenzbestimmung
Konvergenzbestimmung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:26 Mo 02.04.2007
Autor: sancho1980

Hallo
ich habe wieder einen Loesungsweg den ich nicht ganz verstehe. Ich zietiere einfach mal, und unterbreche an der Stelle, wo ich nicht verstehe, ok?

>> f := [mm] (q^n) [/mm] = 1, falls q = 1 und 0, falls |q| < 1.

Den Beweis hierfuer wollen wir einmal ausfuehrlich darstellen, damit Sie sehen, dass die Bestimmung eines Grenzwertes oft muehsam ist. Meist versucht man, Grenzwertberechnungen in geschickter Weise auf bekannte Grenzwerte zurueckzuspielen. Natuerlich muss dazu ein Fundus von Beispielen bekannt sein.

Fuer q = 0 bzw. q = 1 ist f die konstante Folge 0 bzw. 1, die bereits unter (a) behandelt wurde.

Sei also nun 0 < |q| < 1. Dann ist 1/|q| > 1, also 1/|q| = 1 + r mit einem r > 0. Wir wenden nun die Bernoullische Ungleichung an:

[mm] 1/(|q|^n) [/mm] = (1 + [mm] r)^n \ge [/mm] 1 + nr > nr fuer jedes n [mm] \in \IN, [/mm]

also

(*) [mm] |q|^n [/mm] < 1/nr fuer jedes n [mm] \in \IN. [/mm]

Ist eine Toleranz [mm] \varepsilon [/mm] > 0 vorgegeben, so gibt es zu der positiven Zahl [mm] r\varepsilon [/mm] ein [mm] n_0 \in \IN [/mm] mit

1/n0 < [mm] r\varepsilon, [/mm] also 1/n_0r < [mm] \varepsilon. [/mm] <<

Stop. Genau das mein ich. Wie kommt man jetzt genau auf dieses

1/n0 < [mm] r\varepsilon, [/mm] also 1/n_0r < [mm] \varepsilon [/mm] ???

>>Fuer alle n [mm] \ge [/mm] n0 gilt daher und wegen (*)

[mm] |q|^n [/mm] < 1/nr [mm] \le [/mm] 1/n_0r < [mm] \varepsilon. [/mm]

Wegen [mm] |q|^n [/mm] = [mm] |q^n| [/mm] = [mm] |q^n [/mm] - 0| bedeutet dies [mm] |q^n [/mm] - 0| < [mm] \varepsilon. [/mm] Mit eventueller Ausnahme von a1,...,an0-1 erfuellen also alle Folgenglieder an die verlangte Abstandsbedingung |an - 0| < [mm] \varepsilon. [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenzbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:29 Mo 02.04.2007
Autor: Ankh


> (*) [mm]|q|^n[/mm] < 1/nr fuer jedes n [mm]\in \IN.[/mm]
>  
> Ist eine Toleranz [mm]\varepsilon[/mm] > 0 vorgegeben, so gibt es zu
> der positiven Zahl [mm]r\varepsilon[/mm] ein [mm]n_0 \in \IN[/mm] mit
>  
> 1/n0 < [mm]r\varepsilon,[/mm] also 1/n_0r < [mm]\varepsilon.[/mm] <<
>  
> Stop. Genau das mein ich. Wie kommt man jetzt genau auf
> dieses
>  
> 1/n0 < [mm]r\varepsilon,[/mm] also 1/n_0r < [mm]\varepsilon[/mm] ???

[mm] r\varepsilon [/mm] ist eine positive Zahl.
Zu jeder positiven Zahl existiert eine kleinere positive Zahl.
Es existiert sogar eine kleinere positive Zahl, die das Reziproke einer (entsprechenden) großen natürlichen Zahl n ist.
[mm] n_0 [/mm] ist ein solches n.

Wenn man ganz exakt sein wollte, müsste man [mm] n_0 [/mm] noch genauer charakterisieren, zum Beispiel indem man sagt, [mm] n_0 [/mm] ist das kleinste n, so dass $1/n0 < [mm] r\varepsilon$ [/mm] gilt.

Bezug
                
Bezug
Konvergenzbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:38 Mo 02.04.2007
Autor: sancho1980

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]