matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzbeweis einer Reihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenzbeweis einer Reihe
Konvergenzbeweis einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzbeweis einer Reihe: Frage zur weiteren Berechnung
Status: (Frage) beantwortet Status 
Datum: 17:32 So 18.11.2007
Autor: FerrariGirlNr1

Aufgabe
Überprüfen Sie die Konvergenz der nachstehenden Reihen, und bestimmen Sie ggf. ihren Wert:
[mm] \summe_{k=-3}^{\infty} \bruch{1}{2\*3^{k}} [/mm]

Für den Konvergenzbeweis habe ich zunächst eine Indexverschiebung vorgenommen:

= [mm] \summe_{k=0}^{\infty} \bruch{1}{2\*3^{k}} [/mm] + [mm] \bruch{1}{2\*3^{3}} [/mm]

Beim Einsetzen von 3 für k im letzten Bruch bin ich mir nicht sicher, ob es nicht -3 heißen müsste (weil ich ja von -3 den Index zu 0 verschiebe), aber ich habe erstmal die 3 genommen.
Daraus folgt dann
= [mm] \bruch{1}{54} [/mm] + [mm] \summe_{k=0}^{\infty} \bruch{1}{2\*3^{k}} [/mm]

= [mm] \bruch{1}{54} [/mm] + [mm] \bruch{1}{2} [/mm] + [mm] \summe_{k=0}^{\infty} \bruch{1}{3^{k}} [/mm]

Kann ich [mm] \bruch{1}{2} [/mm] aus dem hinteren Term ausklammern?
Nun bin ich am Punkt angekommen, an dem ich nicht mehr weiterzurechnen weiß. Für mich ähnelt
[mm] \summe_{k=0}^{\infty} \bruch{1}{3^{k}} [/mm]
einer harmonischen Reihe, die aber ja nicht konvergent sondern divergent wäre. Aus der Aufgabe geht jedoch hervor, dass die Reihe konvergent sein muss. Ich hoffe man versteht meinen Ansatz und kann mir helfen!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenzbeweis einer Reihe: Indexverschiebung
Status: (Antwort) fertig Status 
Datum: 17:43 So 18.11.2007
Autor: Loddar

Hallo FerrariGirl!


Deine Indexverschiebung erschließt sich mir nicht ganz:

[mm] $$\summe_{k=-3}^{\infty}\bruch{1}{2*3^k} [/mm] \ = \ [mm] \summe_{k=0}^{\infty}\bruch{1}{2*3^{k-3}} [/mm] \ = \ [mm] \summe_{k=0}^{\infty}\bruch{1}{2*3^k*3^{-3}} [/mm] \ = \ [mm] \bruch{27}{2}*\summe_{k=0}^{\infty}\bruch{1}{3^k} [/mm] \ = \ [mm] \bruch{27}{2}*\summe_{k=0}^{\infty}\left(\bruch{1}{3}\right)^k$$ [/mm]

Und damit hast Du nun eine geometrische Reihe, nicht die harmonische Reihe.


Gruß
Loddar


Bezug
                
Bezug
Konvergenzbeweis einer Reihe: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 18:07 So 18.11.2007
Autor: FerrariGirlNr1

Vielen dank für die schnelle Antwort!
Lag tatsächlich schon an der Indexverschiebung... nicht [mm] 3^{3} [/mm] sondern "einfach" [mm] 3^{k-3}... [/mm] Vielen Dank!
Damit hat sich meine Frage erledigt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]