matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenzen
Konvergenzen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Sa 28.08.2010
Autor: xgizmo

Aufgabe
[mm] \bruch{n*2^{n}-n^{2}+2}{n*2^{n}+2^{n}+1+(n+1)*2^{n}} [/mm]

Wie kann ich hier den Grenzwert herausfinden?
Ich habe mir schon überlegt [mm] 2^{n} [/mm] als das Höchste zu betrachten... aber iwie hat es nicht so funktioniert..

habe erstmal zusammengefasst:

[mm] \bruch{n*2^{n}-n^{2}+2}{2*2^{n}(n+1)+1} [/mm]
Komme hier jetzt nicht mehr weiter... wir machen das eigentlich immer so, dass man den höchsten wert ausklammert sprich mit grenzwertsätzen...
Hoffe mir kann da jmnd helfen

Viele Grüße


        
Bezug
Konvergenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Sa 28.08.2010
Autor: steppenhahn

Hallo!


> [mm]\bruch{n*2^{n}-n^{2}+2}{n*2^{n}+2^{n}+1+(n+1)*2^{n}}[/mm]
>  
> Wie kann ich hier den Grenzwert herausfinden?
>  Ich habe mir schon überlegt [mm]2^{n}[/mm] als das Höchste zu
> betrachten... aber iwie hat es nicht so funktioniert..
>  
> habe erstmal zusammengefasst:
>  
> [mm]\bruch{n*2^{n}-n^{2}+2}{2*2^{n}(n+1)+1}[/mm]

[ok]

>  Komme hier jetzt nicht mehr weiter... wir machen das
> eigentlich immer so, dass man den höchsten wert
> ausklammert sprich mit grenzwertsätzen...

Mit dem "Höchsten" ausklammern hast du völlig recht!
Du weißt wahrscheinlich schon, dass [mm]\frac{n^k}{2^{n}} \to 0[/mm] für [mm] $n\to\infty$ [/mm] und festes [mm] $k\in\IN_{0}$. [/mm]

Also ist [mm] 2^{n} [/mm] das "höchste":

[mm]= \frac{2^{n}*\left(n - \frac{n^{2}}{2^{n}} + \frac{2}{2^{n}}\right)}{2^{n}*\left(2*(n+1)+\frac{1}{2^{n}}\right)}[/mm]

Das "Höchste" jetzt ist noch das "n", das muss also auch noch ausgeklammert werden:

[mm]= \frac{n*\left(1 - \frac{n}{2^{n}} + \frac{2}{n*2^{n}}\right)}{n*\left(2*(1+\frac{1}{n})+\frac{1}{n*2^{n}}\right)}[/mm]

[mm]= \frac{1 - \frac{n}{2^{n}} + \frac{2}{n*2^{n}}}{2*(1+\frac{1}{n})+\frac{1}{n*2^{n}}}[/mm]

Nun wende deine Grenzwertsätze an!

Grüße,
Stefan

Bezug
                
Bezug
Konvergenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 Sa 28.08.2010
Autor: xgizmo

ja stimmt, ich hätte noch weiter machen sollen.. mit dem n das habe ich voll verplant:)
supi, dann ist ja der GW [mm] \bruch{1}{2} [/mm]


vielen dank:)

Viele grüße

Bezug
                        
Bezug
Konvergenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 Sa 28.08.2010
Autor: steppenhahn

Hallo,


>  supi, dann ist ja der GW [mm]\bruch{1}{2}[/mm]


[ok]

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]