matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Konvergenzgeschwindigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - Konvergenzgeschwindigkeit
Konvergenzgeschwindigkeit < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzgeschwindigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:46 Fr 24.02.2012
Autor: Fry


Huhu,

ich kann Konvergenzgeschwindigkeiten über nicht einschätzen, also was schnell und was langsam konvergiert, wenn man Konvergenzordnung gegeben hat.
Habt ihr vielleicht ein paar Beispiele dazu?

Was ist zum Beispiel mit der Konvergenzordnung [mm] O(a^n) [/mm]
wobei a ein feste Zahl zwischen 0 und 1 ist.
Ist das langsam?


LG
Fry


        
Bezug
Konvergenzgeschwindigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Sa 25.02.2012
Autor: Denny22


>
> Huhu,
>  
> ich kann Konvergenzgeschwindigkeiten über nicht
> einschätzen, also was schnell und was langsam konvergiert,
> wenn man Konvergenzordnung gegeben hat.
>  Habt ihr vielleicht ein paar Beispiele dazu?
>  
> Was ist zum Beispiel mit der Konvergenzordnung [mm]O(a^n)[/mm]
>  wobei a ein feste Zahl zwischen 0 und 1 ist.

Ich weiß zwar nicht, ob Du mit numerischer Mathematik vertraut bist, aber mein Beispiel kommt aus dem Bereich: In der Numerik kannst Du Dir unter $a$ die Schrittweite eines numerischen Verfahres vorstellen. Die Bezeichnung ist hierbei üblicherweise $h$ anstelle von $a$. Dies liegt gewöhnlich zwischen 0 und 1 und man interessiert sich für kleine Werte von $a$. Der Grund dafür ist, dass man eine numerische Lösung hat (die mittels einem Verfahren berechnet wird), die gegen die analytische Lösung konvergieren soll, wenn man $a$ gegen $0$ laufen lässt. [mm] $O(a^n)$ [/mm] bedeutet nun, dass sich der Fehler zwischen numerischer und analytischer Lösung polynomiell mit Ordnung $n$ verhält. Zeichne Dir einmal die Funktionen $a$, [mm] $a^2$, $a^3$, [/mm] u.s.w. im Intervall $]0,1[$. Dann siehst Du dass $a$ oberhalb von [mm] $a^2$, $a^2$ [/mm] oberhalb von [mm] $a^3$, [/mm] u.s.w. liegt. Der Fehler wird also für größere $n$ wesentlich schneller klein.

>  Ist das langsam?

Das lässt sich schwer sagen. Es hängt immer von dem Aufgabenbereich ab. Grundsätzlich sollte man mindestens zwei Verfahren haben, für die man die Konvergenzgeschwindigkeit (d.h. eine solche $O$ Notation) angeben kann. Das Verfahren, bei dem das $n$ größer ist, konvergiert schneller.

>
> LG
>  Fry
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]