matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzkriterien
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenzkriterien
Konvergenzkriterien < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzkriterien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:00 Mi 09.12.2009
Autor: MatheMaexchen

Aufgabe
Weisen Sie die absolute Konvergenz der Reihe [mm] \summe_{k=1}^{\infty} (-1)^{k} [/mm] * [mm] \bruch{1}{k} [/mm] * ( [mm] \bruch{1}{3} [/mm] + [mm] \bruch{1}{k})^{k} [/mm] nach.
HINWEIS: [mm] \limes_{k\rightarrow\infty} \wurzel[k]{k} [/mm] = 1

Hallo an alle,

bei dieser Aufgabe habe ich den Tipp bekommen mit dem Wurzelkriterium zu arbeiten [mm] (\summe_{k=0}^{\infty} a_{k} [/mm] konvergiert  absolut, wenn ein [mm] q\in \IR [/mm] exisitiert, mit 0<q<1 und folgendes gilt: [mm] \wurzel[n]{|a_{n}|} \le [/mm] q; für alle n [mm] \in \IN [/mm] )
da müsste dann ja stehen: [mm] \wurzel[n]{(-1)^{n} * \bruch{1}{n} * ( \bruch{1}{3} + \bruch{1}{n})^{n}} [/mm]
darf ich die faktoren auseinander ziehen? also das ich dann [mm] \wurzel[n]{(-1)^{n}} [/mm] * [mm] \wurzel[n]{\bruch{1}{10}} [/mm] * [mm] \wurzel[n]{(\bruch{1}{3} + \bruch{1}{n})^{n}} [/mm] habe?
wenn ja, ist das dann das selbe wie -1 * [mm] \wurzel[n]{\bruch{1}{10}} [/mm] * [mm] (\bruch{1}{3} [/mm] + [mm] \bruch{1}{n}) [/mm] ?
wenn ich dann davon versuche den grenzwert zu berechnen komm ich im enteffekt auf [mm] -\bruch{1}{3} [/mm] , kann das stimmen oder hab ich schon irgendwo einen fehler?
schonmal im vorraus danke für eure hilfe
lg

        
Bezug
Konvergenzkriterien: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Mi 09.12.2009
Autor: steppenhahn

Hallo MatheMaexchen,

Du hast einige Ungenauigkeiten in deiner Lösung.
Zunächst ist im Wurzelkriterium gar kein Limes zu sehen.

Indem du aber zeigst, dass der Grenzwert echt kleiner als 1 ist, hast du auch gezeigt, dass ab einem bestimmten n die Forderung des Wurzelkriteriums erfüllt ist. Wichtig: Manchmal existiert vielleicht gar kein Limes. Du hast aber Glück, hier existiert er, und du kannst es so machen, wie du es oben machst.

> bei dieser Aufgabe habe ich den Tipp bekommen mit dem
> Wurzelkriterium zu arbeiten [mm](\summe_{k=0}^{\infty} a_{k}[/mm]
> konvergiert  absolut, wenn ein [mm]q\in \IR[/mm] exisitiert, mit
> 0<q<1 und folgendes gilt: [mm]\wurzel[n]{|a_{n}|} \le[/mm] q; für
> alle n [mm]\in \IN[/mm] )
>  da müsste dann ja stehen: [mm]\wurzel[n]{(-1)^{n} * \bruch{1}{n} * ( \bruch{1}{3} + \bruch{1}{n})^{n}}[/mm]

Das ist (fast) richtig. Du hast die Beträge vergessen, und den Limes:

[mm]\lim_{n\to\infty}\left(\wurzel[n]{\left|(-1)^{n} * \bruch{1}{n} * ( \bruch{1}{3} + \bruch{1}{n})^{n}\right|}\right)[/mm]

Nun kannst du umformen: [mm] (-1)^{n} [/mm] ist entweder 1 oder -1, wenn man allerdings den Betrag darauf anwendet, wird es immer 1:

$= [mm] \lim_{n\to\infty}\left(\wurzel[n]{\left|\bruch{1}{n}\right| * \left|( \bruch{1}{3} + \bruch{1}{n})^{n}\right|}\right)$ [/mm]

Die restlichen Beträge fallen jetzt einfach deswegen weg, weil sowieso alles positiv ist. Nun kannst du auch die Wurzel auseinander ziehen:

$= [mm] \lim_{n\to\infty}\left(\wurzel[n]{\bruch{1}{n}} * \wurzel[n]{\left( \bruch{1}{3} + \bruch{1}{n}\right)^{n}}\right)$ [/mm]

$= [mm] \lim_{n\to\infty}\left(\bruch{1}{\wurzel[n]{n}} * \left( \bruch{1}{3} + \bruch{1}{n}\right)\right)$ [/mm]

So, nun bist du dran. Du weißt, dass [mm] $\lim_{n\to\infty}\sqrt[n]{n} [/mm] = 1$ als Tipp in deiner Aufgabenstellung, und  [mm] $\left( \bruch{1}{3} + \bruch{1}{n}\right)$ [/mm] konvergiert gegen ..., also darfst du die Grenzwertsätze anwenden.

Gegen was konvergiert also der gesamte Term?

Da das dann echt kleiner als 1 ist, hast du die absolute Konvergenz der Reihe mit dem Wurzelkriterium gezeigt.

Grüße,
Stefan

Bezug
                
Bezug
Konvergenzkriterien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Do 10.12.2009
Autor: MatheMaexchen

ah ok, ersteinmal vielen dank für die schnelle antwort.
ich bin dann jetzt auf den grenzwert [mm] \bruch{1}{3} [/mm] gekommen, was ja auch möglich ist (da größer als 0 und kleiner als 1).
also nochmal vielen dank!
liebe grüße
MatheMäxchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]