matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: bestimmen
Status: (Frage) beantwortet Status 
Datum: 10:57 Do 09.01.2014
Autor: rosapanther

Hallo ihr Lieben,
Ich versuche mich gerade dabei den Konvergenzradius der Reihe [mm] \sum_{n\ge 0}{2n \choose n} [/mm] * [mm] z^{n} [/mm]
Anscheinen beträgt der Konvergenzradius (1/4) aber ich verstehe einfach nicht wie man zu diesem Ergebniss kommt :-/
denn wenn ich es mit der Formel von Euler probiere erhalte ich:
r= lim [mm] |\frac{a_{n+1}}{a_{n}} [/mm] | = [mm] lim|\frac{2*(n+1)!}{n!*2}|= lim|\frac{(n+1)!}{n!}| [/mm] = lim (n+1) = [mm] \infty [/mm]  Also konvergiert die Reihe auf ganz [mm] \IR [/mm]


wenn ich es mit Hilfe von Cauchy Hadamard versuche erhalte ich:
r= [mm] \frac{1}{\limsup (\wurzel[n]{|a_{n}|})} [/mm] = [mm] \frac{1}{\limsup (\wurzel[n]{\left|\frac{2}{n!}\right|})}=? [/mm]
auch hier komme ich nicht weiter

meine Nebenrechnung: ${2n [mm] \choose [/mm] n}= [mm] \frac{2n!}{n!*(2n-n)!}= [/mm] 2/n!$

Wo liegt der Fehler?

Danke schonmal :-)

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Do 09.01.2014
Autor: DieAcht


> Hallo ihr Lieben,
> Ich versuche mich gerade dabei den Konvergenzradius der
> Reihe [mm]\sum_{n\ge 0}{2n \choose n}[/mm] * [mm]z^{n}[/mm]
>  Anscheinen beträgt der Konvergenzradius (1/4) aber ich
> verstehe einfach nicht wie man zu diesem Ergebniss kommt
> :-/
> denn wenn ich es mit der Formel von Euler probiere erhalte
> ich:
>  r= lim [mm]|\frac{a_{n+1}}{a_{n}}[/mm] | =
> [mm]lim|\frac{2*(n+1)!}{n!*2}|= lim|\frac{(n+1)!}{n!}|[/mm] = lim
> (n+1) = [mm]\infty[/mm]  Also konvergiert die Reihe auf ganz [mm]\IR[/mm]
>
>
> wenn ich es mit Hilfe von Cauchy Hadamard versuche erhalte
> ich:
>  r= [mm]\frac{1}{\limsup (\wurzel[n]{|a_{n}|})}[/mm] =
> [mm]\frac{1}{\limsup (\wurzel[n]{\left|\frac{2}{n!}\right|})}=?[/mm]
> auch hier komme ich nicht weiter
>  
> meine Nebenrechnung: [mm]{2n \choose n}= \frac{2n!}{n!*(2n-n)!}= 2/n![/mm]

Hier ist der Fehler!

Es gilt:

      [mm] \vektor{2n \\ n}=\frac{(2n)!}{n!*(2n-n)!} [/mm]

>  
> Wo liegt der Fehler?
>  
> Danke schonmal :-)

DieAcht

Bezug
        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Do 09.01.2014
Autor: Diophant

Hallo,

> Hallo ihr Lieben,
> Ich versuche mich gerade dabei den Konvergenzradius der
> Reihe [mm]\sum_{n\ge 0}{2n \choose n}[/mm] * [mm]z^{n}[/mm]
> Anscheinen beträgt der Konvergenzradius (1/4) aber ich
> verstehe einfach nicht wie man zu diesem Ergebniss kommt
> :-/
> denn wenn ich es mit der Formel von Euler probiere erhalte
> ich:
> r= lim [mm]|\frac{a_{n+1}}{a_{n}}[/mm] | =
> [mm]lim|\frac{2*(n+1)!}{n!*2}|= lim|\frac{(n+1)!}{n!}|[/mm] = lim
> (n+1) = [mm]\infty[/mm] Also konvergiert die Reihe auf ganz [mm]\IR[/mm]

>
>

> wenn ich es mit Hilfe von Cauchy Hadamard versuche erhalte
> ich:
> r= [mm]\frac{1}{\limsup (\wurzel[n]{|a_{n}|})}[/mm] =
> [mm]\frac{1}{\limsup (\wurzel[n]{\left|\frac{2}{n!}\right|})}=?[/mm]
> auch hier komme ich nicht weiter

>

> meine Nebenrechnung: [mm]{2n \choose n}= \frac{2n!}{n!*(2n-n)!}= 2/n![/mm]

>

> Wo liegt der Fehler?

Es gilt (sauber geschrieben!):

[mm] \vektor{2n\\n}=\bruch{(2n)!}{n!*(2n-n)!}=\bruch{(2n)!}{(n!)^2} [/mm]

Und das kann man nicht weiter vereinfachen (ich gehe mal stark davon aus, dass dir die Fakultät bekannt ist?).

Ich sehe aber auch in einer Vereinfachung hier keinen wirklichen Sinn. Setze den Binomialkoeffizienten in die korrekte Formel

[mm] r=\lim_{n\rightarrow\infty}\left|\bruch{a_n}{a_{n+1}}\right| [/mm]

ein, und du wirst mit einer absehbaren Arbeit an Kürzen zu dem angegebenen Konvergenzadius r=1/4 kommen.

Gruß, Diophant 

Bezug
                
Bezug
Konvergenzradius: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:45 Do 09.01.2014
Autor: rosapanther

okay danke
Wenn ich nun einsetze erhalte ich:
[mm] \frac{(2n)!*(n+1)!^2}{(n)^2* ((2n+1)!)^2} [/mm]
= [mm] \frac{(n+1)!}{n!}* \frac{(n+1)!}{n!} [/mm] * [mm] \frac{(2n)!}{(2(n+1))!} [/mm]
= [mm] (n+1)^2 [/mm] * [mm] \frac{1}{2(n+1)}= [/mm] (n+1)/2
und auch hier erhalte ich für lim (n+1)/2 [mm] \not [/mm] = 1/4

Hilfe :-(



Bezug
                        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Do 09.01.2014
Autor: fred97


> okay danke
>  Wenn ich nun einsetze erhalte ich:
>  [mm]\frac{(2n)!*(n+1)!^2}{(n)^2* ((2n+1)!)^2}[/mm]
>  =
> [mm]\frac{(n+1)!}{n!}* \frac{(n+1)!}{n!}[/mm] *
> [mm]\frac{(2n)!}{(2(n+1))!}[/mm]
>  = [mm](n+1)^2[/mm] * [mm]\frac{1}{2(n+1)}=[/mm] (n+1)/2

Das stimmt nicht.

Du bekommst

    [mm] (n+1)^2* \bruch{1}{(2n+1)*(2n+2)} [/mm]

FRED

> und auch hier erhalte ich für lim (n+1)/2 [mm]\not[/mm] = 1/4
>  
> Hilfe :-(
>  
>  


Bezug
                                
Bezug
Konvergenzradius: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:15 Do 09.01.2014
Autor: rosapanther

stimmt du hast recht. dann erhalte ich also:
(n+1)/(4*(n+0,5)) = 0,25 * [mm] \frac{n*(1+(1/n))}{n*(1+0,5/n)} [/mm] für lim [mm] n->\infty [/mm] ist das gleich 1/4 richtig?

Bezug
                                        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 Do 09.01.2014
Autor: schachuzipus

Hallo,

> stimmt du hast recht. dann erhalte ich also:
> (n+1)/(4*(n+0,5)) = 0,25 * [mm]\frac{n*(1+(1/n))}{n*(1+0,5/n)}[/mm]
> für lim [mm]n->\infty[/mm] ist das gleich 1/4 richtig?

So ist es!

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]