matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesKonvergenzradius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Konvergenzradius
Konvergenzradius < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: korrektur + tipp
Status: (Frage) beantwortet Status 
Datum: 09:36 Di 03.07.2007
Autor: celeste16

Aufgabe
Man bestimme die Konvergenzradien der Potenzreihen
[mm] a)\summe_{k=1}^{\infty}k^{5}5^{k}x^{k} [/mm]
[mm] b)\summe_{k=1}^{\infty}(\bruch{k+1}{k})^{k}^{2}x^{k} [/mm]

das habe ich bisher:
[mm] a)\summe_{k=1}^{\infty}k^{5}5^{k}x^{k}=\summe_{k=0}^{\infty}(k-1)^{5}5^{k-1}x^{k-1} [/mm]
Quotientenkriterium:
[mm] \vmat{\bruch{k^{5}5^{k}x^{k}}{(k-1)^{5}5^{k-1}x^{k-1}}}=5\vmat{x}(\bruch{k}{k-1})^{5}<1 \wedge k\to\infty \wedge 5\vmat{x}<1 \Rightarrow \vmat{x}<\bruch{1}{5} \Rightarrow R=\bruch{1}{5} [/mm]

b)
[mm] \summe_{k=1}^{\infty}(\bruch{k+1}{k})^{k}^{2}x^{k}=\summe_{k=0}^{\infty}(\bruch{k}{k-1})^{k-1}^{2}x^{k-1} \Rightarrow \vmat{(\bruch{k+1}{k})^{k}^{2}x^{k})/(\bruch{k-1}{k})^{k-1}^{2})}=\vmat{x}\bruch{k+1}{k})^{k}^{2}(\bruch{k}{k-1})^{k-1}^{2}<1 \wedge k\to\infty \wedge \vmat{x}\infty [/mm] *1<1  ????
(da wo die 2en stehen sollte es eigentlich ein Quadrat werden, wollte nur irgendwie nicht so richtig)

tja, also hab ich was falsch gemacht oder noch nicht gemacht etc. wie komm ich aufs ergebnis?


        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 10:39 Di 03.07.2007
Autor: angela.h.b.


> Man bestimme die Konvergenzradien der Potenzreihen
>  [mm]a)\summe_{k=1}^{\infty}k^{5}5^{k}x^{k}[/mm]
>  [mm]b)\summe_{k=1}^{\infty}(\bruch{k+1}{k})^{k}^{2}x^{k}[/mm]
>  
> das habe ich bisher:
>  
> [mm]a)\summe_{k=1}^{\infty}k^{5}5^{k}x^{k}=\summe_{k=0}^{\infty}(k-1)^{5}5^{k-1}x^{k-1}[/mm]
>  Quotientenkriterium:
> [mm]\vmat{\bruch{k^{5}5^{k}x^{k}}{(k-1)^{5}5^{k-1}x^{k-1}}}=5\vmat{x}(\bruch{k}{k-1})^{5}<1 \wedge k\to\infty \wedge 5\vmat{x}<1 \Rightarrow \vmat{x}<\bruch{1}{5} \Rightarrow R=\bruch{1}{5}[/mm]
>
> b)
>  
> [mm]\summe_{k=1}^{\infty}(\bruch{k+1}{k})^{k}^{2}x^{k}=\summe_{k=0}^{\infty}(\bruch{k}{k-1})^{k-1}^{2}x^{k-1} \Rightarrow \vmat{(\bruch{k+1}{k})^{k}^{2}x^{k})/(\bruch{k-1}{k})^{k-1}^{2})}=\vmat{x}\bruch{k+1}{k})^{k}^{2}(\bruch{k}{k-1})^{k-1}^{2}<1 \wedge k\to\infty \wedge \vmat{x}\infty[/mm]
> *1<1  ????
>  (da wo die 2en stehen sollte es eigentlich ein Quadrat
> werden, wollte nur irgendwie nicht so richtig)
>  
> tja, also hab ich was falsch gemacht oder noch nicht
> gemacht etc. wie komm ich aufs ergebnis?
>  

Hallo,

ich werde aus dem, was Du schreibst, noch nicht so richtig schlau, stimme bzgl. des ersten Ergebnisses aber mit Dir überein.
Das zweite Ergebnis kann ich nicht erkennen.

(Tip: statt Zeichensprache sind mitunter ein, zwei erläuternde Worte hilfreicher. Und richtiger.)

Prinzipiell geht es hier ja um die Ermittlung des Konvergenzradius einer Potenzreihe [mm] \summe a_nx^n. [/mm]

Wie das geht, kannst Du z.B. []hier nachlesen.

Für Aufgabe a) bietet sich der Quotient an, für Aufgabe b) Cauchy-Hadamard.

Bei Aufgabe a) steckt, so wie Du es gemacht hast, der richtige Gedanke dahinter, es ist halt äußerst kraus aufgeschrieben.
Wenn Du die oben angegebenen Formeln verwendest - ich bin mir recht sicher, daß sie in der Vorlesung dran waren - bist Du die Last mit dem x los.
Es ist behaglicher, probier's aus!

Gruß v. Angela

Bezug
        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Di 03.07.2007
Autor: wauwau

b) würde ich mit dem Wurzelkriterium angehen....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]