matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:52 Mo 30.11.2009
Autor: wee

Aufgabe
Bestimme den Konvergenzradius der folgenden Potenzreihen:

a) [mm] \summe_{n=0}^\infty \bruch{(-1)^n}{n!(n+k)!}(\bruch{z}{2})^{2n+k}, [/mm] k [mm] \in \IN [/mm]

b) [mm] \summe_{n=0}^\infty \bruch{(-1)^n}{2n+1}z^{2n+1} [/mm]

Hallo,

mein Problem ist folgendes: eine Potenzreihe ist ja definiert als [mm] \summe a_{n}z^n. [/mm]
Bei den Reihen oben steht aber [mm] z^{2n+k} [/mm] bzw. [mm] z^{2n+1}. [/mm]

Kann man trotzdem die Kriterien von Cauchy-Hadamard [mm] (R=\bruch{1}{limsup\wurzel[n]{|a_n|}}) [/mm] und Euler [mm] (R=\bruch{1}{lim \bruch{a_{n+1}}{a_n}}) [/mm] anwenden und falls ja, mit welchem Argument?


Ich hatte mir überlegt, dass man ja erstmal [mm] z^n [/mm] betrachten kann, dort Konvergenz zeigt und dann argumentiert, dass jede Teilfolge (Potenzreihe als Folge von Partialsummen betrachtet) auch in diesem Konvergenzradius konvergieren muss.
Aber ich glaube das ist nicht ganz richtig, denn angenommen man findet, dass der Konvergenzradius für die Potenzreihe mit [mm] z^n [/mm] gleich 0 ist, dann könnte es doch eine Teilfolge geben, die einen größeren Konvergenzradius hat, oder?

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 07:10 Di 01.12.2009
Autor: fred97

Zu b):   $ [mm] \summe_{n=0}^\infty \bruch{(-1)^n}{2n+1}z^{2n+1}=\summe_{k=0}^\infty a_kz^k [/mm]  $

mit              [mm] $a_{2k+1}= \bruch{(-1)^k}{2k+1}$ [/mm]   und    [mm] $a_{2k}=0$ [/mm]  für $k [mm] \in \IN_0$ [/mm]

FRED

Bezug
                
Bezug
Konvergenzradius: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:59 Di 01.12.2009
Autor: wee

Danke für die Antwort!

Bei b) habe ich deine Idee genommen und dann mit Cauchy-Hadamard gezeigt, dass der Konvergenzradius 1 ist.

Bei a) liegt ja so eine Unterteilung nicht auf der Hand. Wenn man aber mal mit [mm] z^n [/mm] anstatt [mm] z^{2n+k} [/mm] rechnet, dann liefert die Formel von Euler (Q-Krit.), dass der Konvergenzradius [mm] \infty [/mm] ist, die Reihe also überall konvergiert. Kann man da jetzt so argumentieren, dass weil die Reihe überall konvergiert, auch Teilfolgen überall konvergieren, also auch [mm] \summe a_nz^{2n+k}? [/mm]

Bezug
                        
Bezug
Konvergenzradius: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Do 03.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]