Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Welchen Konvergenzradius hat die Reihe [mm] \summe_{n=1}^{\infty}\wurzel{2^n+n^2} z^n? [/mm] |
So, ich möchte das Quotientenkriterium anwenden:
[mm] \limes_{n\rightarrow\infty}\bruch{\wurzel{2^{n+1}\wurzel{n^2+2n+1}}}{\wurzel{2^{n}+n^2}}
[/mm]
Dann schreibe ich die Ausdrücke jeweils unter eine Wurzel:
(Eine Anmerkung: Man kann fast überall die Betragstriche weglassen, weil zum Beispiel [mm] n^2>0, [/mm] nur bei dem Term 2n muss man überall Betragsstriche einsetzen, aber das verändert das Ergebniss am Ende ja nicht)
[mm] \limes_{n\rightarrow\infty}\bruch{\wurzel{2^n}\wurzel{2}+\wurzel{2n+1}+\wurzel{n^2}}{\wurzel{2^{n}}+\wurzel{n^2}}=\limes_{n\rightarrow\infty}\bruch{\wurzel{2^n}\wurzel{2}+\wurzel{2n+1}}{\wurzel{2^{n}}}=\limes_{n\rightarrow\infty}\bruch{\wurzel{2^n}\wurzel{2}}{\wurzel{2^{n}}}+\limes_{n\rightarrow\infty}\bruch{\wurzel{2n+1}}{\wurzel{2^{n}}}=\limes_{n\rightarrow\infty}\wurzel{2}+\limes_{n\rightarrow\infty}\bruch{\wurzel{2n+1}}{\wurzel{2^{n}}}
[/mm]
So, der letzte Ausdruck geht gegen 0 und das begründe ich mit Einschließungslemma
[mm] \limes_{n\rightarrow\infty}\bruch{1}{\wurzel{2^n}}<(gleich)\limes_{n\rightarrow\infty}\bruch{\wurzel{2n+1}}{\wurzel{2^{n}}}<(gleich)\limes_{n\rightarrow\infty}\bruch{10x}{\wurzel{2^n}}
[/mm]
und daraus folgt: [mm] 0<(gleich)\limes_{n\rightarrow\infty}\bruch{\wurzel{2n+1}}{\wurzel{2^{n}}}<(gleich) [/mm] 0 und daraus folgt, dass [mm] \limes_{n\rightarrow\infty}\bruch{\wurzel{2n+1}}{\wurzel{2^{n}}}=0
[/mm]
Und somit bekommt man insgesamt: [mm] \wurzel{2}
[/mm]
Und daraus ergibt sich der Konvergenzradius [mm] R=\bruch{1}{\wurzel{2}}
[/mm]
Ist das richtig? Ist das richtig mit dem Einschließungslemma begründet und ist alles richtig aufgeschrieben? Das Ergebnis müsste stimmen, aber kann bitte auch einer gucken, ob ich alles richtig aufgeschrieben habe...
Vielen Dank
Gruß
TheBozz-mismo
PS:Ich habe diese Frage in keinem anderen Forum gestellt.
|
|
|
|
Hallo,
deinen Umformungen sind haarsträubend, ich traue mich kaum, das zu zitieren ...
Es ist doch [mm] $\sqrt{a+b}\neq \sqrt{a}+\sqrt{b}$
[/mm]
Naja, Augen zu und durch:
> Welchen Konvergenzradius hat die Reihe
> [mm]\summe_{n=1}^{\infty}\wurzel{2^n+n^2} z^n?[/mm]
> So, ich möchte
> das Quotientenkriterium anwenden:
Ok, kannst du machen
>
> [mm]\limes_{n\rightarrow\infty}\bruch{\wurzel{2^{n+1}\wurzel{n^2+2n+1}}}{\wurzel{2^{n}+n^2}}[/mm]
Da ist ne Wurzel im Zähler zuviel und ein falsches Operationszeichen:
Richtig: [mm] $\frac{\sqrt{2^{n+1}\red{+}(n^2+2n+1)}}{\sqrt{2^n+n^2}}$
[/mm]
> Dann schreibe ich die Ausdrücke jeweils unter eine
> Wurzel:
> (Eine Anmerkung: Man kann fast überall die Betragstriche
> weglassen, weil zum Beispiel [mm]n^2>0,[/mm] nur bei dem Term 2n
> muss man überall Betragsstriche einsetzen, aber das
> verändert das Ergebniss am Ende ja nicht)
>
> [mm]\limes_{n\rightarrow\infty}\bruch{\wurzel{2^n}\wurzel{2}+\wurzel{2n+1}+\wurzel{n^2}}{\wurzel{2^{n}}+\wurzel{n^2}} [/mm]
das tut nur weh und ist ein mathematisches Schwerverbrechen!
> [mm] =\limes_{n\rightarrow\infty}\bruch{\wurzel{2^n}\wurzel{2}+\wurzel{2n+1}}{\wurzel{2^{n}}} [/mm]
Und obendrein noch lecker aus der Summe gekürzt - uff, mir fehlen die Worte
> [mm] =\limes_{n\rightarrow\infty}\bruch{\wurzel{2^n}\wurzel{2}}{\wurzel{2^{n}}}+\limes_{n\rightarrow\infty}\bruch{\wurzel{2n+1}}{\wurzel{2^{n}}}=\limes_{n\rightarrow\infty}\wurzel{2}+\limes_{n\rightarrow\infty}\bruch{\wurzel{2n+1}}{\wurzel{2^{n}}}[/mm]
> So, der letzte Ausdruck geht gegen 0 und das begründe ich
> mit Einschließungslemma
> [mm]\limes_{n\rightarrow\infty}\bruch{1}{\wurzel{2^n}}<(gleich)\limes_{n\rightarrow\infty}\bruch{\wurzel{2n+1}}{\wurzel{2^{n}}}<(gleich)\limes_{n\rightarrow\infty}\bruch{10x}{\wurzel{2^n}}[/mm]
> und daraus folgt:
> [mm]0<(gleich)\limes_{n\rightarrow\infty}\bruch{\wurzel{2n+1}}{\wurzel{2^{n}}}<(gleich)[/mm]
> 0 und daraus folgt, dass
> [mm]\limes_{n\rightarrow\infty}\bruch{\wurzel{2n+1}}{\wurzel{2^{n}}}=0[/mm]
> Und somit bekommt man insgesamt: [mm]\wurzel{2}[/mm]
>
> Und daraus ergibt sich der Konvergenzradius
> [mm]R=\bruch{1}{\wurzel{2}}[/mm]
Es ergibt sich in der Tat [mm] $\frac{1}{\sqrt{2}}$, [/mm] aber nicht daraus ...
Klammere mal besser aus dem verbesserten Ausdruck, den ich oben hingeschrieben habe, im Zähler [mm] $\sqrt{2^{n+1}}$ [/mm] und im Nenner [mm] $\sqrt{2^n}$ [/mm] aus. Dann kannst du [mm] $\sqrt{2^n}$ [/mm] kürzen und die Grenzwertsätze benutzen ...
>
> Ist das richtig? Ist das richtig mit dem
> Einschließungslemma begründet und ist alles richtig
> aufgeschrieben? Das Ergebnis müsste stimmen, aber kann
> bitte auch einer gucken, ob ich alles richtig
> aufgeschrieben habe...
>
> Vielen Dank
> Gruß
> TheBozz-mismo
>
> PS:Ich habe diese Frage in keinem anderen Forum gestellt.
Gruß
schachuzipus
|
|
|
|