matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mi 08.12.2010
Autor: hilbert

Für welche x konvergiert die Reihe [mm] \summe_{i=0}^{\infty}\bruch{x^{2i+1}}{(2i+1)!} [/mm]

Wenn ich mir den ganzen Spaß mal mit dem Quotientenkriterium anschaue, kommt folgendes raus:

[mm] \bruch{\bruch{x^{2i+3}}{(2i+3)!}}{\bruch{x^{2i+1}}{(2i+1)!}} [/mm]

= [mm] \bruch{x^{2i+3}}{(2i+3)!} [/mm] * [mm] \bruchY{(2i+1)!}\bruch{x^{2i+1}}{(2i+1)!} [/mm]

= [mm] \bruch{x^2}{(2i+2)(2i+3)} [/mm] = [mm] \bruch{x^2}{4i^2+10i+6} [/mm]

Das bringt mir doch herzlich wenig oder?


Anderer Vorschlag von mir wäre:

[mm] \limes_{n\rightarrow\infty} \summe_{i=0}^{n}\bruch{x^{2i+1}}{(2i+1)!} [/mm]

Wähle k = 2i+1

[mm] =\limes_{n\rightarrow\infty}\summe_{k=2i+1}^{2n+1}\bruch{x^{2i+1}}{(2i+1)!} [/mm]

Dann ist [mm] \limes_{n\rightarrow\infty} \summe_{i=0}^{n}\bruch{x^{2i+1}}{(2i+1)!} [/mm] =< [mm] =\limes_{n\rightarrow\infty}\summe_{k=0}^{2n+1}\bruch{x^{k}}{(k)!} [/mm]

das wäre also < [mm] e^x. [/mm]
Das wäre dann eine konvergente Majorante zu jedem x?

Vielen Dank für die Hilfe
Hoffe ich habe mich auf die schnelle nicht vertippt

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Mi 08.12.2010
Autor: schachuzipus

Hallo hilbert,


> Für welche x konvergiert die Reihe
> [mm]\summe_{i=0}^{\infty}\bruch{x^{2i+1}}{(2i+1)!}[/mm]
>  
> Wenn ich mir den ganzen Spaß mal mit dem
> Quotientenkriterium anschaue, kommt folgendes raus:
>  
> [mm]\bruch{\bruch{x^{2i+3}}{(2i+3)!}}{\bruch{x^{2i+1}}{(2i+1)!}}[/mm]

Da fehlen Beträge !!

>  
> = [mm]\bruch{x^{2i+3}}{(2i+3)!}[/mm] * [mm]\bruchY{(2i+1)!}\bruch{x^{2i+1}}{(2i+1)!}[/mm]
>  
> = [mm]\bruch{x^2}{(2i+2)(2i+3)}[/mm] =[ok]

Und was passiert hier für [mm] $i\to\infty$ [/mm] ?


Und was sagt das QK dazu?

> [mm]\bruch{x^2}{4i^2+10i+6}[/mm]
>  
> Das bringt mir doch herzlich wenig oder?
>  
>
> Anderer Vorschlag von mir wäre:
>  
> [mm]\limes_{n\rightarrow\infty} \summe_{i=0}^{n}\bruch{x^{2i+1}}{(2i+1)!}[/mm]
>
> Wähle k = 2i+1
>  
> [mm]=\limes_{n\rightarrow\infty}\summe_{k=2i+1}^{2n+1}\bruch{x^{2i+1}}{(2i+1)!}[/mm]
>  
> Dann ist [mm]\limes_{n\rightarrow\infty} \summe_{i=0}^{n}\bruch{x^{2i+1}}{(2i+1)!}[/mm]
> =<
> [mm]=\limes_{n\rightarrow\infty}\summe_{k=0}^{2n+1}\bruch{x^{k}}{(k)!}[/mm]
>  
> das wäre also < [mm]e^x.[/mm]
>  Das wäre dann eine konvergente Majorante zu jedem x?
>  
> Vielen Dank für die Hilfe
>  Hoffe ich habe mich auf die schnelle nicht vertippt

Gruß

schachuzipus


Bezug
                
Bezug
Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Mi 08.12.2010
Autor: hilbert

Wie mache ich das denn, ohne den Limes im QK zu benutzen?

Bezug
                        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Mi 08.12.2010
Autor: Gonozal_IX

Der Limes ist ja nur ein Hilfsmittel für dich(!) um eine Idee zu bekommen.
Wogegen geht denn der Limes und was hast du fürs QK zu zeigen?

MFG,
Gono.

Bezug
                                
Bezug
Konvergenzradius: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:49 Mi 08.12.2010
Autor: hilbert

Der limes von dem Bruch geht gegen 0 für alle x [mm] \in \IR [/mm]
Ich muss zeigen, dass [mm] a_{n+1} [/mm] / [mm] a_n \le [/mm] q mit q < 1.
Ich versteh das nicht -.-

Bezug
                                        
Bezug
Konvergenzradius: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Fr 10.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]