matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradius  Potentreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenzradius Potentreihe
Konvergenzradius Potentreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius Potentreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Sa 01.08.2009
Autor: ANTONIO

Aufgabe
Nenne eine Potenzreihe, die für ein bestimmtes z absolut konvergent ist aber einen Konvergenzradius von 0 hat

Hallo Forenmitglieder,
ich dachte mir, daß es so etwas doch eigentlich geben müßte. Als mögliche Lösung habe ich geprüft [mm] \summe_{i=0}^{\infty} n!z^n [/mm] mit z=0. Nach dem Quotientenkriterium existiert ein  [mm] \limes_{n\rightarrow\infty} \left| \bruch {a_{n+1}}{a_n} \right| [/mm] =: q nur für [mm] \left| z \right|= [/mm] 0, mit q=0 da

[mm] \limes_{n\rightarrow\infty} \left| \bruch {(n+1)!z^{n+1}}{n!z^n} \right| [/mm] = [mm] \limes_{n\rightarrow\infty} \left| z \right| [/mm] * [mm] \limes_{n\rightarrow\infty} \left| n+1 \right| [/mm]

Stimmt das so?
Viele Grüße
Antonio

        
Bezug
Konvergenzradius Potentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Sa 01.08.2009
Autor: schachuzipus

Hallo Antonio,

> Nenne eine Potenzreihe, die für ein bestimmtes z absolut
> konvergent ist aber einen Konvergenzradius von 0 hat
>  Hallo Forenmitglieder,
>  ich dachte mir, daß es so etwas doch eigentlich geben
> müßte. Als mögliche Lösung habe ich geprüft
> [mm]\summe_{i=0}^{\infty} n!z^n[/mm] mit z=0. Nach dem
> Quotientenkriterium existiert ein  
> [mm]\limes_{n\rightarrow\infty} \left| \bruch {a_{n+1}}{a_n} \right|[/mm]  =: q nur für [mm]\left| z \right|=[/mm] 0, mit q=0 da
>  
> [mm]\limes_{n\rightarrow\infty} \left| \bruch {(n+1)!z^{n+1}}{n!z^n} \right|[/mm]  = [mm]\limes_{n\rightarrow\infty} \left| z \right|[/mm] * [mm]\limes_{n\rightarrow\infty} \left| n+1 \right|[/mm]
>  
> Stimmt das so?

Das Beispiel ist ok, aber dein Schluss ist m.E. nicht so ganz koscher.

Am Ende hast du nämlich für z=0 [mm] $0\cdot{}\infty$ [/mm] dastehen, also einen unbestimmten Ausdruck!

Besser: Für z=0 hast du die Reihe [mm] $\sum n!\cdot{}0^n=\sum [/mm] 0=0$, also ein absolut konvergentes Ding.

Für [mm] $z\neq [/mm] 0$ ist [mm] $\lim\limits_{n\to\infty}\left|\frac{(n+1)!(z+1)^n}{n!z^n}\right|=|z|\cdot{}\lim\limits_{n\to\infty} (n+1)=|z|\cdot{}\infty=\infty$ [/mm]

Also Divergenz für [mm] $z\neq [/mm] 0$ ..

>  Viele Grüße
>  Antonio


LG

schachuzipus

Bezug
                
Bezug
Konvergenzradius Potentreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Sa 01.08.2009
Autor: ANTONIO

Hallo schachuzipus,
danke für Deine Antwort. Das leuchtet mir ein.
Viele Grüße
Antonio

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]