matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradius Potenzreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sequences and series" - Konvergenzradius Potenzreihen
Konvergenzradius Potenzreihen < Sequences and series < Real Analysis (Single Variable) < Real Analysis < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Folgen und Reihen"  | ^^ all forums  | ^ Tree of Forums  | materials

Konvergenzradius Potenzreihen: Frage (beantwortet)
Status: (Question) answered Status 
Date: 12:19 Fr 14/12/2018
Author: hase-hh

Aufgabe
Bestimmen Sie den Konvergenzradius folgender Reihe

f(x) = [mm] \summe_{n=1}^{\infty} (n+1)(-x)^n [/mm]  

in der Umgebung [mm] x_0 [/mm] = 0.

Moin Moin,

ich habe ein paar Fragen zu der Aufgabe im Zusammenhang mit dem Thema Potenzreihen. Die Musterlsung liegt mir vor (s.u.), aber ich verstehe nicht, wie ich da hinkomme.

Zunächst habe ich gefunden:

Wenn eine Potenzreihe der Form

f(x) = [mm] \summe_{n=0}^{\infty} a_n*(x-x_0)^n [/mm]

vorliegt, kann ich den Konvergenzradius zum Beispiel mithilfe des Quotientenkriteriums bestimmen.


Die gegebene Funktion f(x) = [mm] \summe_{n=1}^{\infty} (n+1)(-x)^n [/mm]  

wird zunächst leicht umgeformt zu  

f(x) = [mm] \summe_{n=1}^{\infty} (n+1)*(-1)^n*x^n [/mm]  


1. Frage

Ist diese Potenzreihe eine Taylorreihe?
Ist diese Potenzreihe ein Polynom?


2. Frage

Warum startet die Summe hier erst bei n= 1 und nicht bei n = 0 ? Und macht das überhaupt einen Unterschied?


***

Der Konvergenzradius mithilfe des Quotientenkriteriums wird berechnet mithilfe der Formel:


[mm] \limes_{n\rightarrow\infty} [/mm]  | [mm] \bruch{a_n}{a_{n+1}} [/mm] |


Jetzt wird [mm] a_n [/mm]  und [mm] a_{n+1} [/mm]  berechnet.

f(x) = [mm] \summe_{n=1}^{\infty} (n+1)*(-1)^n*x^n [/mm]

[mm] a_n [/mm] = [mm] (n+1)*(-1)^n [/mm]

[mm] a_{n+1} [/mm] = [mm] (n+1+1)*(-1)^{n+1} [/mm]


3. Frage

Warum werden hier die x-Potenzen bzw. das x nicht mitberücksichtigt, da ein Folgenglied doch mit dem Faktor [mm] x^n [/mm] gebildet wird???


***

[mm] \limes_{n\rightarrow\infty} [/mm]  | [mm] \bruch{(n+1)*(-1)^n}{(n+2)*(-1)^{n+1}} [/mm] |

[mm] \limes_{n\rightarrow\infty} [/mm]  | [mm] \bruch{(n+1)}{(n+2)*(-1)} [/mm] |

[mm] \limes_{n\rightarrow\infty} [/mm]  | [mm] \bruch{n*(1+\bruch{1}{n})}{n*(1+\bruch{2}{n})*(-1)} [/mm] |

[mm] \limes_{n\rightarrow\infty} [/mm]  | [mm] \bruch{(1+\bruch{1}{n})}{(1+\bruch{2}{n})*(-1)} [/mm] |  = | [mm] \bruch{1}{-1} [/mm] | = 1



Danke für eure Hilfe!!












        
Bezug
Konvergenzradius Potenzreihen: Antwort
Status: (Answer) finished Status 
Date: 15:41 Fr 14/12/2018
Author: leduart

Hallo
1. für die Konvergenz einer Summe sind die ersten paar tausend Glieder unwichtig, also ist es dafür egal ob man bei n=0, n=1 oder n=12345 anfängt.
3.. der Konvergenzradius gibt an für welche x die Potenzreihe [mm] \summe a_nx^n [/mm] konvergiert,
2.. Wenn du nur bis zu einem endlichen n summierst ist es ein Polynom.4. wenn es konvergiert kann es auch die Taylorreihe einer funktion sein, nämlich genau der die durch [mm] f(x)=\summe_{i=1}^{\infty} [/mm] definiert ist.
Gruß lesbart

Bezug
        
Bezug
Konvergenzradius Potenzreihen: Antwort
Status: (Answer) finished Status 
Date: 21:53 Fr 14/12/2018
Author: HJKweseleit


>
> 3. Frage
>  
> Warum werden hier die x-Potenzen bzw. das x nicht
> mitberücksichtigt, da ein Folgenglied doch mit dem Faktor
> [mm]x^n[/mm] gebildet wird???
>  

Du kennst sicherlich die geometrische Reihe

[mm] \summe_{i=1}^{\infty} a*p^n =\bruch{a}{1-p} [/mm] , falls |p|<1.

Dass diese Reihe für [mm] |p|\ge [/mm] 1 divergiert, ist trivial.

Nun betrachtest du die Reihe [mm] \summe_{i=1}^{\infty} a_n*x^n. [/mm]

Sie konvergiert, falls du eine Majorante geometrische Reihe mit |p|<1 findest, d.h. es gibt a und |p|<1 mit  [mm] |a_n*x^n|\le|ap^n|. [/mm] Dies ist äquivalent zu [mm] |\bruch{a_{n+1}x^{n+1}}{a_nx^n}|\le [/mm] p<1, und das heißt [mm] |x|<|\bruch{a_n}{a_{n+1}}|. [/mm]

Wie du siehst, kommen dabei das [mm] x^n [/mm] bzw. [mm] x^{n+1}vor, [/mm] kürzen sich aber zu x weg. An der letzten Gleichung erkennst du auch, was das Ganze mit dem Konvergenzradius zu tun hat: x muss kleiner als der angegebene Quotient sein, und wenn dies der Fall ist hast du Konvergenz.  



Bezug
View: [ threaded ] | ^ Forum "Folgen und Reihen"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 1d 9h 43m 5. mana
FunkAna/Ungleichung
Status vor 1d 20h 21m 3. mana
S8-10/Flächeninhalt
Status vor 1d 21h 31m 3. kloeten
S8-10/Formel umstellen
Status vor 3d 5. Josef
UFina/Kalkulation Entwürfen
Status vor 3d 5. Pacapear
UAnaR1/Betragsungleichung
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]