matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradius bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenzradius bestimmen
Konvergenzradius bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius bestimmen: Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 14:57 Mi 06.02.2008
Autor: AnalysisKampfFlo

Aufgabe
Bestimmen Sie den Konvergenzradius p der Potenzreihe

[mm] \summe_{n=0}^{\infty}(-1)^n\bruch{5n^2}{2^{3n}}x^n [/mm]

Wenden Sie die Formel von Cauchy-Hadamard an.

Hallo liebe Matheraum Community.

Ich habe ein kleines Problem mit dieser Aufgabe.

Ich habe die Formel von Hadamard aus diesem Forum genommen

[mm] \bruch{1}{\limes \sup_{n\rightarrow\infty}\wurzel[n]{|a^n|}} [/mm]

und passend umformuliert:

[mm] \bruch{1}{\limes \sup_{n\rightarrow\infty}\wurzel[n]{|(-1)^n\bruch{5n^2}{2^{3n}}|}} [/mm]

Das (-1) ist ja dann überflüssig, da es durch die Betragsstriche eh positiv wird, oder?

Also:

[mm] \bruch{1}{\limes \sup_{n\rightarrow\infty}\wurzel[n]{|\bruch{5n^2}{2^{3n}}|}} [/mm]

D.h. ich brauche nur noch den Nenner ausrechnen:

[mm] \limes \sup_{n\rightarrow\infty}\wurzel[n]{|\bruch{5n^2}{2^{3n}}|} [/mm]

Kann mir jemand erklären, wie ich das mache? Ich bekomme es einfach nicht hin.

Oder ist meine Herangehensweise komplett Falsch?

Danke für Eure Hilfe!





        
Bezug
Konvergenzradius bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Mi 06.02.2008
Autor: Phecda

hi

prinzipiel müsste diese aufgabe mit cauchy-hadamard gehen, so wie du es angefangen hast.
bei solchen aufgaben verwende ich lieber euler's quotientenregel

R = 1/q mit q = [mm] \limes_{n\rightarrow\infty} |\bruch{a_{n+1}}{a_{n}}| [/mm]

wenn du q berechnest kommst du auf 1/8
dass heißt für |x| < 8 konvergiert deine potenzreihe absolut

versuche es mit dem quotientenkriterium
mfg

Bezug
        
Bezug
Konvergenzradius bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Mi 06.02.2008
Autor: XPatrickX


> Bestimmen Sie den Konvergenzradius p der Potenzreihe
>  
> [mm]\summe_{n=0}^{\infty}(-1)^n\bruch{5n^2}{2^{3n}}x^n[/mm]
>  
> Wenden Sie die Formel von Cauchy-Hadamard an.
>  
> Hallo liebe Matheraum Community.

Hey!!

>  
> Ich habe ein kleines Problem mit dieser Aufgabe.
>  
> Ich habe die Formel von Hadamard aus diesem Forum genommen
>
> [mm]\bruch{1}{\limes \sup_{n\rightarrow\infty}\wurzel[n]{|a^n|}}[/mm]
>  
> und passend umformuliert:
>  
> [mm]\bruch{1}{\limes \sup_{n\rightarrow\infty}\wurzel[n]{|(-1)^n\bruch{5n^2}{2^{3n}}|}}[/mm]
>  
> Das (-1) ist ja dann überflüssig, da es durch die
> Betragsstriche eh positiv wird, oder?
>  
> Also:
>
> [mm]\bruch{1}{\limes \sup_{n\rightarrow\infty}\wurzel[n]{|\bruch{5n^2}{2^{3n}}|}}[/mm]
>  
> D.h. ich brauche nur noch den Nenner ausrechnen:
>  
> [mm]\limes \sup_{n\rightarrow\infty}\wurzel[n]{|\bruch{5n^2}{2^{3n}}|}[/mm]
>  
> Kann mir jemand erklären, wie ich das mache? Ich bekomme es
> einfach nicht hin.
>  

Es ist ja:
[mm] \limes \sup_{n\rightarrow\infty}\wurzel[n]{|\bruch{5n^2}{2^{3n}}|} [/mm]

= [mm] \limes \sup_{n\rightarrow\infty}\wurzel[n]{|\bruch{5n^2}{2^{{3}^{n}}}|} [/mm]

= [mm] \limes \sup_{n\rightarrow\infty}|\bruch{\wurzel[n]{5n^2}}{2^{3}}| [/mm]

= [mm] |\bruch{\limes \sup_{n\rightarrow\infty}{\wurzel[n]{5n^2}}}{2^{3}}| [/mm]

[mm] =\bruch{1}{8} [/mm]

> Oder ist meine Herangehensweise komplett Falsch?
>  
> Danke für Eure Hilfe!
>  
>

Gruß Patrick

>
>  


Bezug
                
Bezug
Konvergenzradius bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Mi 06.02.2008
Autor: AnalysisKampfFlo

Vielen Dank für die Hilfe!




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]