matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKonvergenzradius im Komplexen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Konvergenzradius im Komplexen
Konvergenzradius im Komplexen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius im Komplexen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Do 07.05.2009
Autor: steppenhahn

Aufgabe
[Dateianhang nicht öffentlich]

Hallo!

Zu obiger Aufgabenstellung habe ich einige Fragen. Erstmal: Darf ich, wenn [mm] z\in\IC, [/mm] grundsätzlich genauso vorgehen wie wenn [mm] z\in\IR [/mm] wäre? Das Quotientenkriterium und Wurzelkriterium gilt ja grundsätzlich auch in den komplexen Zahlen, also müsste es ja gehen?

Ich fang mal mit a) an:
Ich wende das Quotientenkriterium zum Bestimmen des Konvergenzradius an:

[mm] $\summe_{k=0}^{\infty}\bruch{z^{3k}}{2^{k}} [/mm] = [mm] \summe_{k=0}^{\infty}\bruch{1}{2^{k}}*(z^{3})^{k}$ [/mm]

[mm] $\limes_{k\rightarrow\infty}\left|\bruch{a_{k}}{a_{k+1}}\right| [/mm] = [mm] \limes_{k\rightarrow\infty}\left|\bruch{\bruch{1}{2^{k}}}{\bruch{1}{2^{k+1}}}\right| [/mm] = [mm] \limes_{k\rightarrow\infty}\left|\bruch{2^{k+1}}{2^{k}}\right| [/mm] = [mm] \limes_{k\rightarrow\infty}\left|2\right| [/mm] = 2.$

D.h. der Konvergenzradius von [mm] $z^{3}$ [/mm] wäre 2, d.h. der von z wäre $r = [mm] \sqrt[3]{2}$. [/mm]

Muss ich jetzt auch noch die Ränder untersuchen, um die Aufgabenstelllung zu erfüllen?

Zu b)

Da kann ich wahrscheinlich nicht das Quotientenkriterium anwenden, also müsste man das Wurzelkriterium nehmen. Da käme ich auf

$r = [mm] \bruch{1}{\limes_{k\rightarrow\infty}\sqrt[k]{|a_{k}|}} [/mm] = [mm] \bruch{1}{\limes_{k\rightarrow\infty}\sqrt[k]{|\cos(k)|}}$ [/mm]

Gefühlsmäßig würde ich ja sagen, das 1 rauskommt, weil der Kosinus auf die Potenz in der Reihe kaum Einfluss hat. Aber wie kann ich das oben sehen? Eigentlich steht ja statt dem normalen Limes der Lim Sup. Kann ich das irgendwie benutzen?

Vielen Dank für Eure Hilfe,

Viele Grüße, Stefan.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Konvergenzradius im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Do 07.05.2009
Autor: fred97


> [Dateianhang nicht öffentlich]
>  Hallo!
>  
> Zu obiger Aufgabenstellung habe ich einige Fragen. Erstmal:
> Darf ich, wenn [mm]z\in\IC,[/mm] grundsätzlich genauso vorgehen wie
> wenn [mm]z\in\IR[/mm] wäre? Das Quotientenkriterium und
> Wurzelkriterium gilt ja grundsätzlich auch in den komplexen
> Zahlen, also müsste es ja gehen?
>  
> Ich fang mal mit a) an:
>  Ich wende das Quotientenkriterium zum Bestimmen des
> Konvergenzradius an:
>  
> [mm]\summe_{k=0}^{\infty}\bruch{z^{3k}}{2^{k}} = \summe_{k=0}^{\infty}\bruch{1}{2^{k}}*(z^{3})^{k}[/mm]
>  
> [mm]\limes_{k\rightarrow\infty}\left|\bruch{a_{k}}{a_{k+1}}\right| = \limes_{k\rightarrow\infty}\left|\bruch{\bruch{1}{2^{k}}}{\bruch{1}{2^{k+1}}}\right| = \limes_{k\rightarrow\infty}\left|\bruch{2^{k+1}}{2^{k}}\right| = \limes_{k\rightarrow\infty}\left|2\right| = 2.[/mm]
>  
> D.h. der Konvergenzradius von [mm]z^{3}[/mm] wäre 2, d.h. der von z
> wäre [mm]r = \sqrt[3]{2}[/mm].

So würde ich das nicht schreiben !

Besser: der Konv.-radius von

       $ [mm] \summe_{k=0}^{\infty}\bruch{z^{k}}{2^{k}} [/mm]  $


ist = 2, somit hat die Potenzreihe

         $ [mm] \summe_{k=0}^{\infty}\bruch{z^{3k}}{2^{k}} [/mm]  $

den Konv.-radius  [mm]r = \sqrt[3]{2}[/mm].




>  
> Muss ich jetzt auch noch die Ränder untersuchen, um die
> Aufgabenstelllung zu erfüllen?

Nein, das ist nicht verlangt, aber tus trozdem


>  
> Zu b)
>  
> Da kann ich wahrscheinlich nicht das Quotientenkriterium
> anwenden, also müsste man das Wurzelkriterium nehmen. Da
> käme ich auf
>  
> [mm]r = \bruch{1}{\limes_{k\rightarrow\infty}\sqrt[k]{|a_{k}|}} = \bruch{1}{\limes_{k\rightarrow\infty}\sqrt[k]{|\cos(k)|}}[/mm]
>  
> Gefühlsmäßig würde ich ja sagen, das 1 rauskommt, weil der
> Kosinus auf die Potenz in der Reihe kaum Einfluss hat. Aber
> wie kann ich das oben sehen? Eigentlich steht ja statt dem
> normalen Limes der Lim Sup. Kann ich das irgendwie
> benutzen?

Ich würde so argumentieren:

  wegen $|cos(k)| [mm] \le [/mm] 1$ konvergiert die Potenzreihe schon mal für $|z|<1$.

Der Konv.-radius ist also [mm] \ge [/mm] 1. Angenommen, er wäre >1, so würde die Potenzreihe im Punkt z=1 konvergieren, also wäre die Reihe

        [mm] \summe_{k=0}^{\infty}cos(k) [/mm]

konvergent, was sie aber nicht ist. Also ist der Konv.-radius = 1


FRED




>  
> Vielen Dank für Eure Hilfe,
>  
> Viele Grüße, Stefan.


Bezug
                
Bezug
Konvergenzradius im Komplexen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Do 07.05.2009
Autor: steppenhahn

Danke Fred für deine Antwort!
Hat mir sehr geholfen!

Gehe ich richtig davon aus, dass das Intervall vom Konvergenzradius offen ist, also kein einziger Randwert (bei a) [mm] -\sqrt[2]{3} [/mm] und [mm] \sqrt[3]{2}, [/mm] bei b) -1 und 1) drin ist?

Grüße, Stefan.

Bezug
                        
Bezug
Konvergenzradius im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Do 07.05.2009
Autor: Denny22

Hallo,

> Danke Fred für deine Antwort!
>  Hat mir sehr geholfen!
>  
> Gehe ich richtig davon aus, dass das Intervall vom
> Konvergenzradius offen ist, also kein einziger Randwert
> (bei a) [mm]-\sqrt[2]{3}[/mm] und [mm]\sqrt[3]{2},[/mm] bei b) -1 und 1) drin
> ist?

Ja, da liegst Du richtig. Es handelt sich dabei um ein offenes Intervall (im Reellen) bzw. um einen offenen Kreis (im Komplexen). Die Intervallrandpunkte (im Reellen) bzw. der Kreisrand (im Komplexen) ist generell seperat zu behandeln.

> Grüße, Stefan.

Gruß Denny

Bezug
                                
Bezug
Konvergenzradius im Komplexen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:40 Do 07.05.2009
Autor: steppenhahn

Danke, Denny22, für deine Antwort!!
Grüße, Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]