matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Konvergenzverhalten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - Konvergenzverhalten
Konvergenzverhalten < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzverhalten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Mo 14.11.2011
Autor: kalor

Abend zusammen,

wenn ich eine Funktionenfolge $ [mm] f_t(x) [/mm] $ habe, für welche ich folgendes weiss:

$ [mm] \bruch{f_t}{t} \to [/mm] 0 $ für $ t [mm] \to \infty [/mm] $. (P-f.s.)

Das heisst also, dass $ [mm] f_t [/mm] $ langsamer wächst als linear. Nun zu meiner Frage:

Wenn ich folgendes betrachte:

$ [mm] \lim_t (t\cdot [/mm] (const - [mm] \bruch{f_t(x)}{t})) [/mm] $

kann ich dann sagen, dass dieser Ausdruck P-f.s. gegen unendlich konvergiert ?

mfg

KAlor

        
Bezug
Konvergenzverhalten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Mo 14.11.2011
Autor: fred97


> Abend zusammen,
>  
> wenn ich eine Funktionenfolge [mm]f_t(x)[/mm] habe, für welche ich
> folgendes weiss:
>  
> [mm]\bruch{f_t}{t} \to 0[/mm] für [mm]t \to \infty [/mm]. (P-f.s.)
>  
> Das heisst also, dass [mm]f_t[/mm] langsamer wächst als linear. Nun
> zu meiner Frage:
>  
> Wenn ich folgendes betrachte:
>  
> [mm]\lim_t (t\cdot (const - \bruch{f_t(x)}{t}))[/mm]
>
> kann ich dann sagen, dass dieser Ausdruck P-f.s. gegen
> unendlich konvergiert ?

Nein. Das hängt von der Konstanten ab.

Beispiel: [mm] f_n(x) [/mm] = x/n.

Nimm einmal als Konstante die Zahl 1 und dann die Zahl 0

FRED

>  
> mfg
>  
> KAlor


Bezug
                
Bezug
Konvergenzverhalten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Mo 14.11.2011
Autor: kalor

Hallo Fred,

Ich weiss dass die const nur zwei dinge annehmen kann:

1. $ const > 0 $
2. $ const < 0 $.

Im ersten Fall kann ich sagen, dass es gegen unendlich konvergiert, im zweiten gegen - unendlich, oder ?
Sorry, das hätte ich noch anfügen sollen.
Wenn es stimmt, könntest du mir noch eine Begründung liefern. (anschaulich ist es ja klar)

mfg

KaloR

Bezug
                        
Bezug
Konvergenzverhalten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Di 15.11.2011
Autor: kamaleonti

Moin kalor,
> Ich weiss dass die const nur zwei dinge annehmen kann:
>  
> 1. [mm]const > 0[/mm]
>  2. [mm]const < 0 [/mm].
>  
> Im ersten Fall kann ich sagen, dass es gegen unendlich
> konvergiert, im zweiten gegen - unendlich, oder ?

Ja.

> Sorry, das hätte ich noch anfügen sollen.
> Wenn es stimmt, könntest du mir noch eine Begründung
> liefern. (anschaulich ist es ja klar)

Es ist [mm] \lim_{t\to\infty}(const-\frac{f_t(x)}{t})=const [/mm]


LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]