matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKonvexe Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Konvexe Funktion
Konvexe Funktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexe Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Di 06.11.2012
Autor: Hellfrog

Aufgabe
Seien $I [mm] \subset \IR$ [/mm] ein Intervall und $f : I [mm] \to \IR$ [/mm] eine konvexe Funktion. Zeigen Sie die folgenden
Aussagen:

(a) Für alle [mm] $x_{1}, [/mm] ... , [mm] x_{n} \in [/mm] I$ und alle [mm] $\alpha_{1}, [/mm] ... , [mm] \alpha_{n} \in [/mm] [0, 1]$ mit [mm] $\summe_{k=1}^{n} \alpha_{k} [/mm] = 1$ gilt:
[mm] $f(\alpha_{1}x_{1} [/mm] + ... + [mm] \alpha_{n}x_{n}) \le \alpha_{1}f(x_{1}) [/mm] + ... +  [mm] \alpha_{n}f(x_{n}). [/mm] (1)

(b)  Ist f strikt konvex und sind [mm] $\alpha_{1}, [/mm] ... , [mm] \alpha_{n} [/mm] > 0$ mit [mm] $\summe_{k=1}^{n} \alpha_{k} [/mm] = 1$, so gilt in (1) genau
dann das Gleichheitszeichen, wenn [mm] x_{1}=x_{2}=...=x_{n}. [/mm]

hallo

die definition einer konvexen funktion ist ja:
$f(tx + (1-t)y) [mm] \le [/mm] tf(x) + (1-t)f(y)$ mit $x,y [mm] \in [/mm] I, t [mm] \in [/mm] (0,1)$

ich weiß jetzt nicht so richtig wie ich das bei a) anweden kann, der einzige unterschied zur definition von konvex ist das die summe der [mm] \alpha_{i} [/mm] gleich 1 ist und jedes [mm] \alpha [/mm] aus [0,1] sein darf.

meine überlegung war jetzt, dass ich es "induktiv" versuche. also [mm] \alpha_{1}=1 [/mm] und somit alle anderen [mm] \alpha [/mm] = 0, danach [mm] \alpha_{1}=\alpha_{2}=\bruch{1}{2} [/mm] usw
damit zeig ich dann aber auch nur was die definition von konvex schon sagt.


zur b) hab ich mir folgendes überlegt:
ich nehme an, dass die behauptung für ein x aus I nicht gilt, also das gleichheit gilt auch mit [mm] x_{1}=x_{2}=...=x_{n}\not=x_{n+1}. [/mm]
die summe der [mm] \alpha_{i} [/mm] muss ich dann natürlich bis n+1 laufen lassen. da die koeffizienten der funktionenwerte ja alle fest sind, sollte man die behauptung direkt sehen können.
aber dann hab ich garnicht benutzt das die funktion strikt konvex ist (definition oben mit < statt mit [mm] \le), [/mm] was mich etwas stutzig macht, ob die lösung so korrekt ist.


vielen dank im voraus

        
Bezug
Konvexe Funktion: a)
Status: (Antwort) fertig Status 
Datum: 11:18 Mi 07.11.2012
Autor: tobit09

Hallo Hellfrog,


> die definition einer konvexen funktion ist ja:
>  [mm]f(tx + (1-t)y) \le tf(x) + (1-t)f(y)[/mm] mit [mm]x,y \in I, t \in (0,1)[/mm]

Genau.
Insbesondere [mm] $tx+(1-t)y\in [/mm] I$.
Für die Aufgabe a) ist die Überlegung nützlich, dass die Ungleichung auch für t=0 und t=1 stimmt.


> meine überlegung war jetzt, dass ich es "induktiv"
> versuche. also [mm]\alpha_{1}=1[/mm] und somit alle anderen [mm]\alpha[/mm] =
> 0, danach [mm]\alpha_{1}=\alpha_{2}=\bruch{1}{2}[/mm] usw
>  damit zeig ich dann aber auch nur was die definition von
> konvex schon sagt.

Zeige per Induktion nach n: Für alle [mm] $n\in\IN$ [/mm] gilt: Für alle [mm] $x_1,\ldots,x_n\in [/mm] I$ und [mm] $\alpha_1,\ldots,\alpha_n\in[0,1]$ [/mm] mit [mm] $\sum_{k=1}^n\alpha_k=1$ [/mm] ist [mm] $\alpha_1x_1+\ldots+\alpha_nx_n\in [/mm] I$ und die Ungleichung gilt.

Für den Induktionsanfang n=0 ist nichts zu zeigen, da keine solchen [mm] $\alpha_1,\ldots,\alpha_n$ [/mm] mit [mm] $\sum_{k=1}^n\alpha_k=1$ [/mm] existieren.

Für den Induktionsschritt von n nach n+1 setze [mm] $t:=\sum_{k=1}^n\alpha_k=1-a_{n+1}$. [/mm]
Falls t=0 kannst du die Behauptung direkt überprüfen.
Sei nun [mm] $t\not=0$. [/mm]

Dann gilt:

     [mm] $\alpha_1f(x_1)+\ldots+\alpha_nf(x_n)+\alpha_{n+1}f(x_{n+1})=t*\left(\bruch{\alpha_1}{t}f(x_1)+\ldots+\bruch{\alpha_n}{t}f(x_n)\right)+(1-t)f(x_{n+1})$. [/mm]

Kommst du damit weiter?


Viele Grüße
Tobias

Bezug
        
Bezug
Konvexe Funktion: b)
Status: (Antwort) fertig Status 
Datum: 11:54 Mi 07.11.2012
Autor: tobit09


> zur b) hab ich mir folgendes überlegt:
>  ich nehme an, dass die behauptung für ein x aus I nicht
> gilt, also das gleichheit gilt auch mit
> [mm]x_{1}=x_{2}=...=x_{n}\not=x_{n+1}.[/mm]

Wenn die Behauptung für gewisse [mm] $x_1,\ldots,x_{n+1}$ [/mm] nicht gilt, warum sollte dann [mm] $x_1=x_2=\ldots=x_n\not=x_{n+1}$ [/mm] gelten?

> da die koeffizienten der funktionenwerte ja
> alle fest sind, sollte man die behauptung direkt sehen
> können.

Wie?

>  aber dann hab ich garnicht benutzt das die funktion strikt
> konvex ist (definition oben mit < statt mit [mm]\le),[/mm]

Und in der Definition von oben ist "für [mm] $x\not=y$" [/mm] zu ergänzen. Für $x=y$ gilt Gleichheit und nicht "$<$".


Es sind zwei Richtungen zu zeigen. Dass für [mm] $x_1=\ldots=x_n$ [/mm] Gleichheit in (1) gilt, kannst du direkt nachprüfen.

Für die andere Richtung führe wieder Induktion nach n. Behandle die Fälle n=0 und n=1 separat.

Um von [mm] $n\ge1$ [/mm] auf n+1 zu schließen arbeite mit t definiert wie in a). Am besten wartest du mit diesem Teil, bis du a) gelöst hast.

Bezug
                
Bezug
Konvexe Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Mi 07.11.2012
Autor: Hellfrog

hallo

vielen dank für die hilfe, hat echt sehr geholfen (besonders beim induktionsschritt). werde es nachher mal ordentlich aufschreiben und falls es noch fragen gibt nochmal hier melden :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]