matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationKonvexität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Konvexität
Konvexität < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Mi 26.01.2011
Autor: Lilium

Hallo!
Ich soll zeigen, dass eine im Intervall liegende Funktion [mm] f:I\to\IR [/mm] genau dann konvex ist, wenn
[mm] f(\bruch{x+y}{2})\le\bruch{f(x)+f(y)}{2} [/mm]

ich muss hierbei ja hin-und rück-richtung zeigen.
Wir haben Kovexität so definiert:
eine Funktion [mm] f:D\to\IR [/mm] heißt konvex, wenn für alle [mm] x,y\inD [/mm] und [mm] 0<\lambda<1 [/mm] gilt:
[mm] f(\lambda x+(1-\lambda)y)\le\lambda f(x)+(1-\lambda)f(y) [/mm]

meine idee war jetzt von [mm] f(\bruch{x+y}{2})\le\bruch{f(x)+f(y)}{2} [/mm] auszugehen und das "irgendwie" auf [mm] f(\lambda x+(1-\lambda)y)\le\lambda f(x)+(1-\lambda)f(y) [/mm] umzurechnen und umgekehrt. Ich habe:

[mm] f(\bruch{x+y}{2})\le\bruch{f(x)+f(y)}{2} [/mm]
wenn isch jetzt [mm] \lambda=\bruch{1}{2} [/mm] setzte erhalte ich:
[mm] f(\lambda x+\lambda y)\le\lambda(f(x)+f(y))=\lambda f(x)+\lambda [/mm] f(y)
aber irgendwie komme ich da nicht weiter. Kann ich mit [mm] f(\lambda x+(1-\lambda)y)\le\lambda f(x)+(1-\lambda)f(y) [/mm] noch anders arbeiten? Oder benötige ich eine andere Definition?

Ich freue mich über jeden Tipp.

Liebe Grüße
Lilium

        
Bezug
Konvexität: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Mi 26.01.2011
Autor: Gonozal_IX

Hallo Lillium,

eine Richtung hast du ja schon dastehen.... welche?

Für die andere... naja, ein wenig Eigenrecherche wäre schon schön gewesen, insbesondere wenn die Hinweise bei Wikipedia (z.B. durchhangeln von []hier  nach []hier) so umfangreich sind.

Liebe Grüße,
Gono.

Bezug
                
Bezug
Konvexität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Mi 26.01.2011
Autor: Lilium

Hallo,
danke für die schnelle Antwort. Bei wiki habe ich schon gelesen (hätte ich das erwähnen sollen? für mich ist es eingetlich klar, dass ich vorher selber nachdenke, probiere und nachschlage...), und auch jensensche ungleichung habe ich gegoogelt, aber wir hatten das in der Vl noch nicht, was in dem wiki artikel über die ungleichung (bzgl des beweises) steht, daher muss ich da wohl anders rangehen. Ich bin mir halt nicht mal ansatzweise sicher, wie ich diese konvexitäts-Definition aus der Vorlesung anwenden soll auf meine aufgabenstellung. Aber kann ich es denn irgendwie umformen? Hat jemand einen tipp oder ein beispiel? Wir hatten in der Vorlesung leider nur die definition.

Liebe Grüße
Lilium

Bezug
                        
Bezug
Konvexität: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Do 27.01.2011
Autor: rainerS

Hallo!

> Hallo,
>  danke für die schnelle Antwort. Bei wiki habe ich schon
> gelesen (hätte ich das erwähnen sollen? für mich ist es
> eingetlich klar, dass ich vorher selber nachdenke, probiere
> und nachschlage...), und auch jensensche ungleichung habe
> ich gegoogelt, aber wir hatten das in der Vl noch nicht,
> was in dem wiki artikel über die ungleichung (bzgl des
> beweises) steht, daher muss ich da wohl anders rangehen.
> Ich bin mir halt nicht mal ansatzweise sicher, wie ich
> diese konvexitäts-Definition aus der Vorlesung anwenden
> soll auf meine aufgabenstellung. Aber kann ich es denn
> irgendwie umformen? Hat jemand einen tipp oder ein
> beispiel? Wir hatten in der Vorlesung leider nur die
> definition.

Überlege dir mal, was die Aussage anschaulich heisst.

(*)  [mm] f(\bruch{x+y}{2})\le\bruch{f(x)+f(y)}{2} [/mm]

bedeutet doch, dass, wenn du dir die Verbindungsstrecke zwischen den Punkten $(x,f(x))$ und $(y,f(y))$ anschaust, der Mittelpunkt [mm] $((\bruch{x+y}{2}), \bruch{f(x)+f(y)}{2})$ [/mm] dieser Strecke auf oder oberhalb des Punktes [mm] $((\bruch{x+y}{2}), f(\bruch{x+y}{2}))$ [/mm] (auf dem Grafen der Funktion f) liegt.

Die allgemeine Definition der Konvexität bedeutet, das jeder Punkt der Verbindungsstrecke auf oder oberhalb des Grafen liegt: wenn [mm] $\lambda$ [/mm] von 0 bis 1 läuft, durchläuft

[mm] (\lambda x+(1-\lambda)y,\lambda f(x)+(1-\lambda)f(y)) [/mm]

die Punkte der Verbindungsstrecke von x und y, während

[mm] (\lambda x+(1-\lambda)y,f(\lambda x+(1-\lambda)y)) [/mm]

die Punkte des Grafen von f zwischen $(x,f(x))$ und $(y,f(y))$ durchläuft.

Offensichtlich ist die Aussage (*) über den Mittelpunkt ein Spezialfall davon, nämlich für [mm] $\lambda=1/2$. [/mm] Das ist die eine Richtung der Äquivalenz.

Der Knackpunkt ist nun, dass aus (*) (für beliebige Werte von x und y) die allgemeine Bedingung

[mm]f(\lambda x+(1-\lambda)y)\le\lambda f(x)+(1-\lambda)f(y) [/mm]

folgt, was du nachweisen musst.

Vielleicht machst du dir die Aussage erst einmal an ein paar Bildern klar, bevor du versuchst, es formal zu beweisen.

  Viele Grüße
    Rainer

Bezug
                                
Bezug
Konvexität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 Do 27.01.2011
Autor: Lilium

Hallo,
ich habe fleißig gezeichnet!! Klar, mit [mm] \lambda=\bruch{1}{2} [/mm] habe ich da schon mal die richtung vom allgemeinen auf den "Spezialfall". Kann ich für die rückrichtung vielleicht sagen, dass ich die Wahl von [mm] \lambda [/mm] auf [mm] \bruch{1}{2} [/mm] einschränke?? ich muss ja irgendwie zeigen, dass es für alle [mm] \lambda [/mm] zwischen 0 und 1 gilt, aber wenn der Spezialfall nur für [mm] \lambda=\bruch{1}{2} [/mm] gilt... kann ich das irgendwie "erweitern"? Ist ja schon seltsam, dass da eine Äquivalenz besteht, hätte ich nicht gedacht (kam bislang auch leider nicht vor).

Hat jemand einen Tipp für mich für die Rückrichtung?

LG
Lilium

Bezug
                                        
Bezug
Konvexität: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Do 27.01.2011
Autor: Gonozal_IX

Hallo Lillium,

den Link zu Wikipedia hatten wir ja schon diskutiert.
Das Problem ist jetzt, dass der Weg von Jensen wohl der einzig gangbare ist.

Zusammengefasst also:

Die Aussage muss irgendwie verallgemeinert werden zu:

[mm] $f\left(\bruch{ax + by}{a+b}\right) \le \bruch{a}{a+b}f(x) [/mm] + [mm] \bruch{b}{a+b}f(y)$ [/mm] für [mm] $a,b\in\IN$ [/mm]

D.h. für $a=b=1$ würde es die Voraussetzung darstellen.
Aus obiger Ungleichung wäre es dann ein leichtes eure Definition der Konvexität zu folgern!

Aber bisher hab ich keinen Weg ausser Jensens gefunden, wie man das hinbekommen könnte....

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]