matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenKoordinaten von Polynomen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Koordinaten von Polynomen
Koordinaten von Polynomen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinaten von Polynomen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 04:13 So 08.12.2013
Autor: Cccya

Aufgabe
Betrachten Sie im reellen Vektorraum V3 der Polynome mit reellen Koeffizienten vom
Grad kleiner oder gleich drei die Polynome

pj = [mm] (1-X)^j [/mm]        j Element (0,1,2,3)

q1 = [mm] X^2-X [/mm]

q2 = [mm] X^3-1 [/mm]

a) Geben Sie die Koordinaten von q1 und q2 bezüglich der geordneten Basis B =
(p0; p1; p2; p3) an (es darf vorausgesetzt werden, dass B eine Basis ist).

b)Beweisen Sie, dass q1; q2 linear unabhängig sind und ergänzen Sie die Menge (q1; q2)
durch Elemente von B zu einer Basis von V3.

Begründen Sie Ihre Ergebnisse.

Ich habe diese Frage in keinem anderen Forum gestellt.

Meine Lösung:
a) Ich mache einen Koeffizientenvergleich der Form (für q1):

[mm] aX^3+bX^2+cX+d [/mm] = [mm] y2X^2+y3X [/mm] weil die gegebene Basis auch jederzeit zu [mm] (1,x,x^2,x^3) [/mm] umgeformt werden kann. Dann komme ich auf (0,1,-1,0)
Für q2 analog (1,0,0,-1)

b) Man kann die gerade Bestimmten Koordinaten bezüglich der geordneten Basis verwenden: a(0,1,-1,0)+b(1,0,0,-1)=(0,0,0,0) ist offensichtlich nur für a=b=0 erfüllt. Um zur Basis zur Ergänzen muss man nur überprüfen mit welchen Ergänzungen man alle Elemente der geordneten Basis darstellen kann. Dies ist z.B. möglich mit [mm] (1,x,(x^2-x),(x^3-1)) [/mm] weil [mm] x^2= (x^2-x)-x [/mm]
und [mm] x^3=(x^3-1)-1 [/mm]

Sind diese Lösungen korrekt und was müsste ich eventuell noch an Begründungen schreiben?
Vielen Dank schonmal.  

        
Bezug
Koordinaten von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:00 So 08.12.2013
Autor: angela.h.b.


> Betrachten Sie im reellen Vektorraum V3 der Polynome mit
> reellen Koeffizienten vom
> Grad kleiner oder gleich drei die Polynome

>

> pj = [mm](1-X)^j[/mm] j Element (0,1,2,3)

>

> q1 = [mm]X^2-X[/mm]

>

> q2 = [mm]X^3-1[/mm]

>

> a) Geben Sie die Koordinaten von q1 und q2 bezüglich der
> geordneten Basis B =
> (p0; p1; p2; p3) an (es darf vorausgesetzt werden, dass B
> eine Basis ist).

>

> b)Beweisen Sie, dass q1; q2 linear unabhängig sind und
> ergänzen Sie die Menge (q1; q2)
> durch Elemente von B zu einer Basis von V3.

>

> Begründen Sie Ihre Ergebnisse.
> Ich habe diese Frage in keinem anderen Forum gestellt.

>

> Meine Lösung:
> a) Ich mache einen Koeffizientenvergleich der Form (für
> q1):

>

> [mm]aX^3+bX^2+cX+d[/mm] = [mm]y2X^2+y3X[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Hallo,

ich verstehe nicht, was Du tust.

Du mußt a,b,c,d finden mit

X^2-X=a(1-X)^0+b(1-X)^1+c(1-X)^2+d(1-X)^3,

der Koordinatenvektor bzgl B ist dann \vektor{a\\b\\c\\d).


> weil die gegebene Basis auch
> jederzeit zu [mm](1,x,x^2,x^3)[/mm] umgeformt werden kann. Dann
> komme ich auf (0,1,-1,0)

Schauen wir mal:

[mm] \vektor{0\\1\\-1\\0}=1*(1-X)-1*(3X-3X^2+X^31-X)^2=1-X-1+2X-X^2=X-X^2\not=q_1. [/mm]

> Für q2 analog (1,0,0,-1)

[mm] =(1-X)^0-(1-X)^3=1-1+3X-3X^2+X^3=3X-3X^2+X^3\not=q_2 [/mm]


>

> b) Man kann die gerade Bestimmten Koordinaten bezüglich
> der geordneten Basis verwenden:
> a(0,1,-1,0)+b(1,0,0,-1)=(0,0,0,0) ist offensichtlich nur
> für a=b=0 erfüllt.

Das kann man so machen.

Man kann aber auch vorrechnen, daß

aus [mm] aq_1+bq_2=0 [/mm] folgt a=b=0.


> Um zur Basis zur Ergänzen muss man
> nur überprüfen mit welchen Ergänzungen man alle Elemente
> der geordneten Basis darstellen kann.

So kann (!) man das machen.

> Dies ist z.B.
> möglich mit [mm](1,x,(x^2-x),(x^3-1))[/mm] weil [mm]x^2= (x^2-x)-x[/mm]
> und
> [mm]x^3=(x^3-1)-1[/mm]

Die Überlegung stimmt, aber Du solltest auch unbedingt vorrechnen, daß [mm] (1,x,(x^2-x),(x^3-1)) [/mm] linear unabhängig ist und dann sagen: diese 4 linear unabhängige Vektoren sind eine Basis, denn [mm] V_3 [/mm] hat die Dimension 4.

LG Angela

>

> Sind diese Lösungen korrekt und was müsste ich eventuell
> noch an Begründungen schreiben?
> Vielen Dank schonmal.


Bezug
                
Bezug
Koordinaten von Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 So 08.12.2013
Autor: Cccya

Vielen Dank für deine Antwort. Wir haben das bei uns glaube ich so eingeführt dass beim Koeffizientenvergleich vom höchsten Polynom zum niedrigsten gezählt wird. Deshalb ist a bei mir die Koordinate bezüglich [mm] (1-X)^3 [/mm] und b die bezüglich [mm] (1-X)^2 [/mm] usw. So komme ich dann auf:

[mm] 0*(1-X)^3+1*(1-X)^2+-1*(1-X)+0*1 [/mm] = [mm] 1-2X+X^2 -1+X=X^2-X=q1 [/mm]

Ich sehe aber auch grad dass ich bei meinem Ansatz  nen Schreibfehler drin habe, kein Wunder dass dir der merkwürdig vorkam :D.

Zu b): Ist die lineare Unabhängigkeit nicht schon klar weil eine Basis maximale lineare Teilmenge und minimales Erzeugendensystem ist und wenn daher die geordnete Basis 4 Elemente hat dann muss jedes andere Erzeugendensystem auch mindestens 4 linear unabhängige Elemente haben? Erzeugendensystem ist ja gezeigt weil die geordnete Basis dargestellt werden kann und weniger als 4 linear unabhängige Elemente sind nicht möglich.

Bezug
                        
Bezug
Koordinaten von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Mo 09.12.2013
Autor: angela.h.b.


> Vielen Dank für deine Antwort. Wir haben das bei uns
> glaube ich so eingeführt dass beim Koeffizientenvergleich
> vom höchsten Polynom zum niedrigsten gezählt wird.
> Deshalb ist a bei mir die Koordinate bezüglich [mm](1-X)^3[/mm] und
> b die bezüglich [mm](1-X)^2[/mm] usw. So komme ich dann auf:

>

> [mm]0*(1-X)^3+1*(1-X)^2+-1*(1-X)+0*1[/mm] = [mm]1-2X+X^2 -1+X=X^2-X=q1[/mm]

Hallo,

beim Koordinatenvektor kommt es auf die Reihenfolge der Basisvektoren in der Basis an.
Hier war gegeben:
>B =(p0; p1; p2; p3)
mit [mm] p_j:=(1-X)^j, [/mm]

und deshalb ist der Koordinatenvektor von [mm] p_1 [/mm] der Vektor [mm] \vektor{0\\-1\\1\\0}. [/mm]
Das ist nicht verhandelbar...


> Zu b): Ist die lineare Unabhängigkeit nicht schon klar
> weil eine Basis maximale lineare Teilmenge

linear unabhängige Teilmenge

> und minimales
> Erzeugendensystem ist und wenn daher die geordnete Basis 4
> Elemente hat dann muss jedes andere Erzeugendensystem auch
> mindestens 4 linear unabhängige Elemente haben?

Ja.

Du kannst es schon so machen:

> Erzeugendensystem ist ja gezeigt weil die geordnete Basis
> dargestellt werden kann

Weil die Standardbasis dargestellt werden kann, ist es ein Erzeugendensystem.
Es ist auch ein minimales Erzeugendensystem,
aber das müßte noch nachvollziehbar begründet werden. (Nicht unbedingt im Forum, aber auf Deinem Lösungsblatt)

LG Angela


> und weniger als 4 linear
> unabhängige Elemente sind nicht möglich.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]