matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenKoordinatenabbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Abbildungen und Matrizen" - Koordinatenabbildung
Koordinatenabbildung < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatenabbildung: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:48 Sa 13.02.2010
Autor: stffn

Aufgabe
Die Koordinatenabbildung [mm] K_{B} [/mm] von [mm] \IR_{\le2}[x] [/mm] bezüglich einer bestimmten Basis [mm] B:={p_{1},p_{2},p_{3}} [/mm] ist gegeben durch:

[mm] K_{B}: \IR_{\le2}[x] \to \IR^{3} [/mm]
              [mm] ax^{2}+bx+c \mapsto \vektor{a-c \\ a+b \\ b+2c } [/mm]

(a) Bestimmen Sie [mm] K_{B}^{-1} (\vektor{e \\ f \\ g }) [/mm] für [mm] \vektor{e \\ f \\ g } \in IR^{3}. [/mm]

(b) Bestimmen Sie B.

Moin!
Ich weiß leider garnichts damit anzufangen. Wie ich Koordinatenabbildungen ausrechne wurde mir hier schon erklärt, also Bilder der Basis bestimmen und dann mit Koeffizientenvergleich usw.
aber ich hab ja garkeine Basis gegeben?!
Bin für jeden Tip dankbar, schöne Grüße!

        
Bezug
Koordinatenabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Sa 13.02.2010
Autor: angela.h.b.


> Die Koordinatenabbildung [mm]K_{B}[/mm] von [mm]\IR_{\le2}[x][/mm] bezüglich
> einer bestimmten Basis [mm]B:={p_{1},p_{2},p_{3}}[/mm] ist gegeben
> durch:
>  
> [mm]K_{B}: \IR_{\le2}[x] \to \IR^{3}[/mm]
>                
> [mm]ax^{2}+bx+c \mapsto \vektor{a-c \\ a+b \\ b+2c }[/mm]
>  
> (a) Bestimmen Sie [mm]K_{B}^{-1} (\vektor{e \\ f \\ g })[/mm] für
> [mm]\vektor{e \\ f \\ g } \in IR^{3}.[/mm]
>  
> (b) Bestimmen Sie B.
>  Moin!
>  Ich weiß leider garnichts damit anzufangen. Wie ich
> Koordinatenabbildungen ausrechne wurde mir hier schon
> erklärt, also Bilder der Basis bestimmen und dann mit
> Koeffizientenvergleich usw.
> aber ich hab ja garkeine Basis gegeben?!

Hallo,

doch. Wir wissen zwar nicht, wie sie aussieht, aber es wurde gesagt, daß [mm] B:=(p_1, p_2, p_3) [/mm] irgendeine Basis des Polynomraums sein soll,

und daß

[mm] K_B(ax^2+bx+c)=\vektor{a-c \\ a+b \\ b+2c }. [/mm]

Das bedeutet: es ist [mm] ax^2+bx+c =(a-c)p_1 [/mm] + [mm] (a+b)p_2 [/mm] + [mm] (b+2c)p_3. [/mm]

Die Abbildung [mm] K_B [/mm] liefert ja für jedes Polynom seinen Koordinatenvektor bzgl. B.


In Aufgabe a) sollst Du nun sagen, was $ [mm] K_{B}^{-1} (\vektor{e \\ f \\ g }) [/mm] $ ist.

Du mußt Dir also überlegen, welches Polynom vermöge [mm] K_B [/mm] auf [mm] \vektor{e \\ f \\ g } [/mm] abgebildet wird.

Eine mögliche Vorgehensweise:

welches Polynom wird auf [mm] \vektor{1\\0\\0} [/mm] abgebildet, welches auf [mm] \vektor{0\\1\\0}, [/mm] welches auf [mm] \vektor{0\\0\\1} [/mm] ?

Gruß v. Angela



Bezug
                
Bezug
Koordinatenabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:29 Sa 13.02.2010
Autor: stffn

Also ist das im Prinzip auch nichts anderes?!?!
Wenn ich es richtig verstanden hab, ist es egal welche Vektoren ich mir aussuche, auf die abgebildet werden soll? d.h. ich könnte auch beispielsweise gucken, welches Polynom auf [mm] \vektor{2 \\ 0 \\ 0 } [/mm] , [mm] \vektor{0 \\ 1 \\ 0 } [/mm] und [mm] \vektor{0 \\ 0 \\ 3 } [/mm] abbildet?
Naja, so richtig verstanden habe ich es glaube nicht.

Was bedeutet denn die ^{-1} ?


Bezug
                        
Bezug
Koordinatenabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Sa 13.02.2010
Autor: angela.h.b.


> Also ist das im Prinzip auch nichts anderes?!?!

Hallo,

da ich nicht weiß, was Du mit "das" meinst, kann ich hier schlecht antworten.

>  Wenn ich es richtig verstanden hab, ist es egal welche
> Vektoren ich mir aussuche, auf die abgebildet werden soll?

Nein. Du sollst schließlich sagen: das Polynom [mm] p=...x^2+...x+... [/mm]  wird durch [mm] K_B [/mm]  auf [mm] \vektor{d\\e\\f} [/mm] abgebildet.

Du sollst die Koeffizienten angeben.

Anderer Lösungsweg - wahrscheinlich besser:

Du kennst [mm] K_B(ax^2+bx+c)=\vektor{...\\...\\...} [/mm] (Hab jetzt keine Lust, nochmal zu gucken).

Nun ist die Frage: wie müssen a, b, c gewählt werden, damit  [mm] \vektor{...\\...\\...} =\vektor{d\\e\\f} [/mm] herauskommt?.

Gruß v. Angela

Bezug
                
Bezug
Koordinatenabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 So 14.02.2010
Autor: stffn

Also, ich glaube ich habe endlich die Lösung:

Ich dachte mir, ich muss das LGS lösen, in dem ich einfach nach der Abbildungsvorschrift für die Koordinaten a, b und c eine 1 "einsetze", dass also [mm] \vektor{e \\ f \\ g}=K_{B}(ax^{2}+bx+c)=\vektor{a-c \\ a+b \\ b+2c} [/mm] ist:

[mm] \pmat{ 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 2 }=\vektor{e \\ f \\ g} [/mm]

Ergebnis:

a=2e-f+g
b=2f-2e-g
c=g-f+e

Also müsste das Endergebnis sein:

[mm] K_{B}^{-1}(\vektor{e \\ f \\ g})=(2e-f+g)x^{2}+(2f-2e-g)x+(g-f+e) [/mm]

Wenn ich jetzt B haben möchte, würde ich gucken welche Polynome auf [mm] \vektor{1 \\ 0 \\ 0} [/mm] , [mm] \vektor{0 \\ 1 \\ 0} [/mm] und [mm] \vektor{0 \\ 0 \\ 1} [/mm] abbildet (3 lin. unabh. Vektoren bilden eine Basis).
Ist das richtig?


Bezug
                        
Bezug
Koordinatenabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 So 14.02.2010
Autor: angela.h.b.


> Also, ich glaube ich habe endlich die Lösung:
>  
> Ich dachte mir, ich muss das LGS lösen, in dem ich einfach
> nach der Abbildungsvorschrift für die Koordinaten a, b und
> c eine 1 "einsetze", dass also [mm]\vektor{e \\ f \\ g}=K_{B}(ax^{2}+bx+c)=\vektor{a-c \\ a+b \\ b+2c}[/mm]
> ist:
>  
> [mm]\pmat{ 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 2 }=\vektor{e \\ f \\ g}[/mm]

Hallo,

formuliert ist es katastrophal, meinen tust Du es richtig.

Du löst das Gleichungssystem mit den variablen a,b,c:

[mm] \pmat{ 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 2 }*\vektor{a\\b\\c}=\vektor{e \\ f \\ g}. [/mm]

>  
> Ergebnis:
>  
> a=2e-f+g
>  b=2f-2e-g
>  c=g-f+e
>  
> Also müsste das Endergebnis sein:
>  
> [mm]K_{B}^{-1}(\vektor{e \\ f \\ g})=(2e-f+g)x^{2}+(2f-2e-g)x+(g-f+e)[/mm]

Hab' ich jetzt nicht nachgerechnet, die Vorgehensweise ist richtig.

>  
> Wenn ich jetzt B haben möchte, würde ich gucken welche
> Polynome auf [mm]\vektor{1 \\ 0 \\ 0}[/mm] , [mm]\vektor{0 \\ 1 \\ 0}[/mm]
> und [mm]\vektor{0 \\ 0 \\ 1}[/mm] abbildet

Genau.

Gruß v. Angela



Bezug
                                
Bezug
Koordinatenabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Mo 15.02.2010
Autor: stffn

Vielen Dank...!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]