matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenKoordinatenform Gerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Koordinatenform Gerade
Koordinatenform Gerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatenform Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Mo 03.05.2010
Autor: omarco

also ich habe die gleichung g:x = [mm] \vektor{-2\\3\\4}+t*\vektor{1\\2\\-1} [/mm]

wie kommt man nun auf diese Gleichung :
E: [mm] x_1-2x_2-3x_3= [/mm] 1

Wie kommt man jetzt darauf ?
Und wie kann ich aus einer Gerade etwas mit einer Ebene machen ?

        
Bezug
Koordinatenform Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Mo 03.05.2010
Autor: Al-Chwarizmi


>  also ich habe die gleichung

>    g:  x = [mm]\vektor{-2\\3\\4}+t*\vektor{1\\2\\-1}[/mm]
>  
> wie kommt man nun auf diese Gleichung :
>  E: [mm]x_1-2x_2-3x_3=[/mm] 1



Hallo omarco,

Die erste Gleichung beschreibt eine Gerade im [mm] \IR^3, [/mm] die andere
eine Ebene im [mm] \IR^3. [/mm] Die Gleichungen sind also keineswegs gleichwertig.
Man kann die zweite Gleichung nicht aus der ersten herleiten !

Die Gerade g liegt auch nicht etwa in der Ebene E, aber sie liegt in
der zu E parallelen Ebene  P:  $\ [mm] x_1-2\,x_2-3\,x_3\ [/mm] =\ -20$

Möglicherweise hast du uns einen Teil der Aufgabenstellung verschwiegen ...


LG    Al-Chw.

Bezug
                
Bezug
Koordinatenform Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Mo 03.05.2010
Autor: omarco

Ja stimmt sie haben recht. Wir sollten zeigen, dass die Gerade parallel zur Ebene liegt.

Aber wie kann man aus einer einfach Gerade (wie die, die in meiner ersten Frage angegeben ist) in Koordinatenfrom darstellen ?

Bezug
                        
Bezug
Koordinatenform Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Mo 03.05.2010
Autor: abakus


> Ja stimmt sie haben recht. Wir sollten zeigen, dass die
> Gerade parallel zur Ebene liegt.
>
> Aber wie kann man aus einer einfach Gerade (wie die, die in
> meiner ersten Frage angegeben ist) in Koordinatenfrom
> darstellen ?

Man kann eine Gerade im Raum nicht in Koordinatenform angeben.


Bezug
                                
Bezug
Koordinatenform Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:28 Mo 03.05.2010
Autor: Al-Chwarizmi


> Man kann eine Gerade im Raum nicht in Koordinatenform
> angeben.


Kann man eigentlich schon, nur ist die resultierende Gleichung
nicht einfach eine (einzige) lineare Gleichung, sondern z.B.
ein System aus 2 linearen Gleichungen oder eine quadratische
Gleichung in den Variablen x, y und z .

Man kann zum Beispiel die x-Achse des Koordinatensystems
durch die Gleichung

       [mm] y^2+z^2=0 [/mm]

beschreiben.


LG     Al-Chw.  


Bezug
                        
Bezug
Koordinatenform Gerade: Parallelität
Status: (Antwort) fertig Status 
Datum: 23:17 Mo 03.05.2010
Autor: Loddar

Hall omarco!


Wie bereits geschrieben: eine Ebene bliebt eine Ebene, und eine Gerade eine Gerade.

Um die Parallelität von Gerade und Ebene nachzuweisen, kann man zeigen, dass der Normalenvektor der Ebene und der Richtungsvektor der Gerade senkrecht zueinander stehen (Stichwort: MBSkalarprodukt).


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]