matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTransformationenKoordinatentransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Transformationen" - Koordinatentransformation
Koordinatentransformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatentransformation: Integral mit Trafo
Status: (Frage) beantwortet Status 
Datum: 13:37 Mi 11.06.2008
Autor: Ole-Wahn

Aufgabe
Berechne
[mm] (i)$\int_B x^2 d\lambda^2,~~B=\lbrace (x,y)\in \IR^2 :~|x|+|y|\leq 1\rbrace$ [/mm]

[mm] (ii)$\int_B x^2+y^2 d\lambda^2,~~B=\lbrace(x,y) \in \IR^2:~\frac{x^2}{a^2}+\frac{y^2}{b^2} \leq 1\rbrace ,~~ab\neq0$ [/mm]

(iii)das Volumen des Körpers, der von [mm] $x^2+y^2+z^2=2ax$ [/mm] aus dem Zylinder [mm] $(x-a)^2 +y^2 \leq b^2,~~0



Hi,

diese ganze Transformationsgeschichte sitzt bei mir noch nicht wirklich. Wäre dankbar, wenn jemand mir das mal an Hand einer der Aufgaben erklären könnte.
Eine Frage zu 3. hab ich auch noch - ist das wirklich ein Zylinder ? Irgendwie fehlt doch da die z-Koordinate oder?

Vielen Dank,

lg, Ole

        
Bezug
Koordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Fr 13.06.2008
Autor: MathePower

Hallo Ole-Wahn,

> Berechne
> (i)[mm]\int_B x^2 d\lambda^2,~~B=\lbrace (x,y)\in \IR^2 :~|x|+|y|\leq 1\rbrace[/mm]
>  
> (ii)[mm]\int_B x^2+y^2 d\lambda^2,~~B=\lbrace(x,y) \in \IR^2:~\frac{x^2}{a^2}+\frac{y^2}{b^2} \leq 1\rbrace ,~~ab\neq0[/mm]
>  
> (iii)das Volumen des Körpers, der von [mm]x^2+y^2+z^2=2ax[/mm] aus
> dem Zylinder [mm](x-a)^2 +y^2 \leq b^2,~~0
> herausgeschnitten wird.
>  
>
>
>
> Hi,
>  
> diese ganze Transformationsgeschichte sitzt bei mir noch
> nicht wirklich. Wäre dankbar, wenn jemand mir das mal an
> Hand einer der Aufgaben erklären könnte.

Zu i)

Hier ist offensichtlich, daß B Kreise mit [mm]0 \le r \le 1[/mm] beschreibt,
also [mm]x^{2}+y^{2}=r^{2}[/mm]

Wähle hier also die Parametertransformation

[mm]x=r*\cos\left(\varphi\right)[/mm]
[mm]y=r*\cos\left(\varphi\right)[/mm]

Dann ist

[mm]J=\pmat{ \bruch{\partial x\left(r,\varphi\right)}{\partial r} & \bruch{\partial x\left(r,\varphi\right)}{\partial \varphi} \\ \bruch{\partial y\left(r,\varphi\right)}{\partial r} & \bruch{\partial y\left(r,\varphi\right)}{\partial \varphi}}[/mm]

,wobei J die []Jacobi-Matrix der Parametertransformation ist.

Die Grenzen sind aus der Gleichung

[mm]x^{2}+y^{2}=r^{2} [/mm]

zu berechnen und entsprechend der Parametertransformation zu transformieren.

Dann ergibt sich:

[mm]\int_B x^2 d\lambda^2=\integral_{0}^{2\pi}{\integral_{0}^{1}{x^{2}\left(r,\varphi\right) \ det\left(J\right) \ dr} \ d\varphi}[/mm]


>  Eine Frage zu 3. hab ich auch noch - ist das wirklich ein
> Zylinder ? Irgendwie fehlt doch da die z-Koordinate oder?


Die Grenze für z bekommst Du heraus, wenn Du diese 2 Gleichungen schneidest:

[mm]x^{2}+y^{2}+z^{2}=2ax[/mm]

[mm]\left(x-a\right)^{2}+y^{2}=r^{2}, \ 0 \le r^{2} \le b^{2}[/mm]

>  
> Vielen Dank,
>  
> lg, Ole


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]