matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKoordinatentransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Koordinatentransformation
Koordinatentransformation < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 Do 13.12.2012
Autor: sissile

Aufgabe
R= [mm] \{ \vektor{x \\ y} \in [-1,1] \times [-1,1]: x-y \ge 0 \} [/mm]
1)Skizziere R und berechne [mm] \int_R e^{x+y} [/mm] dx dy
2)Gib eine Koordiantentransformation [mm] \phi: \IR^2 [/mm] -> [mm] \IR^2 [/mm]  an, [mm] \phi \vektor{x \\ y}= \vektor{u \\ v} [/mm] mit u= x-y
3) Werte das integral mit hilfe der Koordiantentramnsformation und der SUbstitutionsregel erneut aus.



Hallo


1)
Dreieck mit Eckpunkten (-1,-1), (1,-1) ,(1,1)
[mm] \int_R e^{x+y} [/mm] dx dy = [mm] \int_{x=-1}^{1} \int_{y=-1}^{x} e^{x+y} [/mm] dy dx = [mm] \int_{x=-1}^{1} e^x [/mm] * [mm] (e^x [/mm] - 1/e) dx = [mm] \int_{x=-1}^{1} e^{2x} [/mm] - [mm] \frac{e^x}{e} [/mm] dx = [mm] e^2/ [/mm] 2- [mm] e^{-2}/2- [/mm] 1 + [mm] 1/e^2 [/mm]

2)
Ich habe das Bsp. nur mündlich überliefert bekommen, ich denke die Aufgabe ist bei b) nicht ganz vollständig. Man sagte mir man will eine Koordiantentransformatioon um [mm] \pi/4 [/mm] !.Fehlt da dann nicht ein wert für v?

        
Bezug
Koordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Do 13.12.2012
Autor: leduart

Hallo
Haben wir das nicht grade gerechnet
entweder u,v angeben oder die Drehung, was dann u,v ergibt.
aber eigentlich weisst du das schon. Ein bissel Vertrauen auf dein wissen solltest du schon haben!
man kann natürlich auch v sehen, wenn man will dass die abbildung nicht verzerrt!
Gruss leduart

Bezug
                
Bezug
Koordinatentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Do 13.12.2012
Autor: sissile

Das Bsp gestern war ein Rechteck,also ist es schon bissal anders^^

Ich verstehe nicht, wie das gemeint ist mit u = x-y..?? Wie soll v gewählt werden? Warum enstpricht das der dreheung um [mm] \pi/4? [/mm]
Ich will dass die Abbildung nicht verzerrt wird!

Bezug
                        
Bezug
Koordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Do 13.12.2012
Autor: leduart

Hallo
du willst ja [mm] e^{x+y} [/mm] vereinfachen also ist logisch v=x+y
wenn du das mit gestern vergleichst ist es wieder eine [mm] \pi/4 [/mm] Drehung im Uhrzeigersinn diesmal und eine Vergrüsserung da die det [mm] \ne [/mm] 1 ist. also [mm] d(xy)\ne [/mm] d(uv)
Gruss leduart

Bezug
                                
Bezug
Koordinatentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Do 13.12.2012
Autor: sissile

Eine Frage hab ich dazu:
Wie erkennst du dass es sich bei der transformation u=x-y, v=x+y um eine Drehung handelt??

Ich hatte noch vergessen, dass es eine drehstreckung werden soll. Heißt dass das die längen erhalten bleiben?

u= x-y
v=x+y
<=> x= [mm] \frac{u+v}{2} [/mm]
<=> y= [mm] \frac{v-u}{2} [/mm]
Diffeomrophismus [mm] \phi \vektor{u \\ v}=\vektor{x \\ y}= \vektor{\frac{u+v}{2}\\ \frac{v-u}{2}} [/mm]
D [mm] \phi =\pmat{ 1/2 &1/2\\1/2 &-1/2 } [/mm]
|det( D [mm] \phi [/mm] ) |= 1/2

ich glaube ich irre mich da...bzw. sehe das falsch.


Bezug
                                        
Bezug
Koordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Do 13.12.2012
Autor: leduart

Hallo
du hast falsch abgeleitet, dv/du=0 nicht v!
Gruss leduart

Bezug
                                                
Bezug
Koordinatentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Do 13.12.2012
Autor: sissile

wo kommt ein v in meiner ableitung vor?
WIe kommt man denn nun auf die grenzen?
LG

Bezug
                                                        
Bezug
Koordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Do 13.12.2012
Autor: leduart

Hallo
es kommt nicht mehr vor, nachden du verbessert hast, davor stand in der det z.B (1+u)/2 und nicht das richtige 1/2
Gruss leduart

Bezug
                                                                
Bezug
Koordinatentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 Do 13.12.2012
Autor: sissile

Achso , verbessert hab ich aber sofort ;D, deshalb dachte ich keiner hätte es gemerkt^^
Ist das nun eine Drehstreckung?
Weil eine Drehstreckung ist ja definiert als:
x' = cos [mm] \phi [/mm] x - sin [mm] \phi [/mm] y
y' = sin [mm] \phi [/mm] x + cos [mm] \phi [/mm] y

Du hast gesagt ich drehe um [mm] \pi/4 [/mm] in der Uhrzeigersinn. So schaut das dreieck wie ein nabla-Symbol aus... Das sind die grenzen für :
- [mm] \sqrt{2} [/mm] <= x<= 0 , - [mm] \sqrt{2} [/mm] -x <= y <= 0 und 0 <= x<= [mm] \sqrt{2}, [/mm] - [mm] \sqrt{2} [/mm] +x <=y<=0
Aber mit den Drehstreckung und der Transformation bin ich mir nicht sicher ob ich überhaupt noch das richtige ausrechne...

Bezug
                                                                        
Bezug
Koordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Do 13.12.2012
Autor: leduart

Hallo
du hast hier eine Drehstreckung mit dem Faktor [mm] \wurzel{2} [/mm]
da machst du bei der Transformation durch den Faktor 1/2d(uv) wieder gut.
der Punkt 1,1 geht nach (2,0) der Punkt (1,-1)nach (0.-2) und (-1,-1)nach (-2,0) wenn x'=x+y, y'=y-x
was du mit den grenzen für x,y meinst seh ich nicht, ebt, meinst du u und v bzw x'y' ind hast die streckung weggelassen?
Gruss leduart



Bezug
                                                                                
Bezug
Koordinatentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:40 Do 13.12.2012
Autor: sissile

Hallo nochmal
> der Punkt 1,1 geht nach (2,0) der Punkt (1,-1)nach (0.-2) und (-1,-1)nach (-2,0) wenn x'=x+y, y'=y-x

Ja aber hier haben wir doch nach 1.Aufgabenpost: $ [mm] \phi \vektor{x \\ y}= \vektor{u \\ v} [/mm] $ mit u= x-y
und v= x+y wie wir später festgestellt haben.
Hast du das hier nicht ganz anders betrachtet oder hast du dich verschrieben?


LG

Bezug
                                                                                        
Bezug
Koordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 23:48 Do 13.12.2012
Autor: leduart

Hallo
verschrieben, aber rechne einfach selbst die neuen Punkte (u,v) aus , ich glaub die hatte ich richtig und nur die Bezeichnungen falsch. ich bin zu müde zum nachrechnen
Gute nacht leduart

Bezug
                                                                                                
Bezug
Koordinatentransformation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:53 Do 13.12.2012
Autor: sissile

Äh jetzt verstehe ich es erst... Die Drehung musste dann aber gegen den Uhrzeiger sein um Pi/4 wenn du die werte einsetzt.
Bezug
                                                                                                        
Bezug
Koordinatentransformation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 So 16.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]