matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKoppelung B(1,p)-ZV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Koppelung B(1,p)-ZV
Koppelung B(1,p)-ZV < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koppelung B(1,p)-ZV: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:44 Mi 22.03.2006
Autor: dancingestrella

Hallo...

ich habe folgende Frage:
Was ist die n-fache Koppelung Bernoulli-verteilter Zufallsvariablen?

Man meint damit doch folgendes:
Ein Bernoulli-Experiment mit Erfolgswahrscheinlichkeit $p$ wird $n$-mal hintereinanderausgeführt. Nun suchen wir die entsprechende Verteilung, oder???

Mein Bauch sagt mir: Binomialverteilung. Aber ich kann es gar nicht begründen! Kann mir es jemand langsam erklären?

Und angenommen wir haben eine [mm] $\mathcal{B}_(1,p)$ [/mm] verteilte Zufallsvariable $X$. Wo ist dann der Unterschied zu der 2 fachen Koppelung von X und zur Faltung von X mit sich selbst?

lg, dancingestrella

        
Bezug
Koppelung B(1,p)-ZV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Mi 22.03.2006
Autor: felixf

Hallo,

ich hab mal kurz eine Nachfrage: Was ist die Kopplung zweier Zufallsvariablen $X$ und $Y$ (sagen wir mal $X, Y : [mm] \Omega \to \IR$)? [/mm] Ist das der ''Zufallsvektor'' $(X, Y) : [mm] \Omega \to \IR^2$, $\omega \mapsto (X(\omega), Y(\omega))$? [/mm] Oder ist das die Summe $X + Y : [mm] \Omega \to \IR$, $\omega \mapsto X(\omega) [/mm] + [mm] Y(\omega)$? [/mm]

> ich habe folgende Frage:
>  Was ist die n-fache Koppelung Bernoulli-verteilter
> Zufallsvariablen?

Sind die ZVen unabhaengig? Ich nehme mal an, ja.

> Man meint damit doch folgendes:
>  Ein Bernoulli-Experiment mit Erfolgswahrscheinlichkeit [mm]p[/mm]
> wird [mm]n[/mm]-mal hintereinanderausgeführt. Nun suchen wir die
> entsprechende Verteilung, oder???

Ich denke ja. Nur, wovon? Seien [mm] $X_1, \dots, X_n$ [/mm] die einzelnden Experimente (Zufallsvariablen). Suchst du die Verteilung der Summe der Experimente [mm] $X_1 [/mm] + [mm] \dots [/mm] + [mm] X_n$, [/mm] oder suchst du die Verteilung des Zufallsvektors [mm] $\mathbf{X} [/mm] = [mm] (X_1, \dots, X_n)$? [/mm]

> Mein Bauch sagt mir: Binomialverteilung. Aber ich kann es
> gar nicht begründen! Kann mir es jemand langsam erklären?

Im ersten Fall (Summe) ist es eine Binomialverteilung, ja.

> Und angenommen wir haben eine [mm]\mathcal{B}_(1,p)[/mm] verteilte
> Zufallsvariable [mm]X[/mm]. Wo ist dann der Unterschied zu der 2
> fachen Koppelung von X und zur Faltung von X mit sich
> selbst?

Haengt davon ab was die Kopplung ist :-) Wenn es die Summe ist, dann entspricht das genau der Faltung!

Wenn es das Auffassen als Zufallsvektor ist, dann ist es was ganz anderes: Die Verteilung ist dann (da die Experimente unabhaengig sind) das Produkt von $n$ [mm] $\mathcal{B}_{1,p}$-Verteilungen, [/mm] also [mm] $P(\mathbf{X} [/mm] = [mm] (x_1, \dots, x_n)) [/mm] = [mm] \prod_{i=1}^n P(X_i [/mm] = [mm] x_i)$. [/mm] (Wenn die ZVen nicht unabhaengig sind, kannst du das nicht als Produkt auseinanderziehen.)

Hilft dir das weiter?

LG Felix


Bezug
        
Bezug
Koppelung B(1,p)-ZV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:36 Do 23.03.2006
Autor: lebes

Hmm, da du schreibst, dass du im Grundstudium bist, nehme ich an, dass damit tatsächlich die gewöhnliche Faltung gemeint ist. Damit gilt alles was du geschrieben hast.

Den Begriff der Kopplung gibt es tatsächlich unabhängig davon. Hab da vor Uhrzeiten mal ein sündhaft schweres Seminar drüber gehalten (vielleicht war auch einfach nur die zugehörige Literatur sündhaft schwer;-) ). Soweit ich mich erinner geht es dabei grob darum, zwei Prozesse ab dem Moment wo sie sich treffen im Gleichlauf weiterlaufen zu lassen. Sehe aber wenig Zusammenhang zu dem was du geschrieben hast.

Bezug
        
Bezug
Koppelung B(1,p)-ZV: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Fr 24.03.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]