matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Kosinussatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Kosinussatz
Kosinussatz < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kosinussatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 So 25.03.2012
Autor: Mathe-Andi

Aufgabe
Berechne die fehlenden Größen eines Parallelogramms.

a=18cm
e=12,5cm
[mm] \beta=42° [/mm]
[mm] \alpha=138° [/mm]

Hallo,

ich habe mir vom Parallelogramm erstmal ein Dreieck geschnappt. Um dieses geht es hier. Dazu habe ich mir eines so bemaßt, wie es zur einheitlichen Formel passt und eines mit den Angaben aus der Skizze in meinem Buch. Damit ich nichts vertausche. F steht für Formel, S für Skizze.

Die allg. Formel aus dem Kosinussatz [mm] a^2=b^2+c^2-2bc*cos \alpha [/mm] habe ich für meine gesuchte Seite umgestellt und sie lautet nun:
[mm] b^2=e^2+a^2-2ea*cos\bruch{\alpha}{2} [/mm]

Für b bekomme ich 17,86cm heraus. Mein Lösungsbuch sagt aber 16,72cm. Wo liegt mein Fehler?

Die Diagonalen im Parallelogramm sind die Winkelhalbierende von [mm] \alpha [/mm] und [mm] \beta [/mm] oder?

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Kosinussatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 So 25.03.2012
Autor: Al-Chwarizmi


> Berechne die fehlenden Größen eines Parallelogramms.
>  
> a=18cm
>  e=12,5cm
>  [mm]\beta=42°[/mm]
>  [mm]\alpha=138°[/mm]
>  Hallo,
>  
> ich habe mir vom Parallelogramm erstmal ein Dreieck
> geschnappt. Um dieses geht es hier. Dazu habe ich mir eines
> so bemaßt, wie es zur einheitlichen Formel passt und eines
> mit den Angaben aus der Skizze in meinem Buch. Damit ich
> nichts vertausche. F steht für Formel, S für Skizze.
>  
> Die allg. Formel aus dem Kosinussatz [mm]a^2=b^2+c^2-2bc*cos \alpha[/mm]
> habe ich für meine gesuchte Seite umgestellt und sie
> lautet nun:
>  [mm]b^2=e^2+a^2-2ea*cos\bruch{\alpha}{2}[/mm]
>  
> Für b bekomme ich 17,86cm heraus. Mein Lösungsbuch sagt
> aber 16,72cm. Wo liegt mein Fehler?
>  
> Die Diagonalen im Parallelogramm sind die Winkelhalbierende
> von [mm]\alpha[/mm] und [mm]\beta[/mm] oder?    [notok]

Nein, das sind sie normalerweise nicht, sondern nur im
Spezialfall des Rhombus (gleichseitiges Parallelogramm).
  

> [Dateianhang nicht öffentlich]

Tipp:  wende den Kosinussatz auf das Dreieck ABC so an,
dass darin der Winkel [mm] \beta [/mm] benützt wird. So erhältst du
für die Unbekannte b eine quadratische Gleichung, und
damit wird auch klar, dass es vielleicht zwei verschiedene
Lösungen geben könnte.
Andere Möglichkeit: nicht den Kosinussatz, sondern den
Sinussatz anwenden. Auch dabei daran denken, dass
es zwei Lösungen geben könnte !

LG    Al-Chw.

LG   Al-Chw.


Bezug
        
Bezug
Kosinussatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 So 25.03.2012
Autor: abakus


> Berechne die fehlenden Größen eines Parallelogramms.
>  
> a=18cm
>  e=12,5cm
>  [mm]\beta=42°[/mm]
>  [mm]\alpha=138°[/mm]
>  Hallo,
>  
> ich habe mir vom Parallelogramm erstmal ein Dreieck
> geschnappt. Um dieses geht es hier. Dazu habe ich mir eines
> so bemaßt, wie es zur einheitlichen Formel passt und eines
> mit den Angaben aus der Skizze in meinem Buch. Damit ich
> nichts vertausche. F steht für Formel, S für Skizze.
>  
> Die allg. Formel aus dem Kosinussatz [mm]a^2=b^2+c^2-2bc*cos \alpha[/mm]
> habe ich für meine gesuchte Seite umgestellt und sie
> lautet nun:
>  [mm]b^2=e^2+a^2-2ea*cos\bruch{\alpha}{2}[/mm]
>  
> Für b bekomme ich 17,86cm heraus. Mein Lösungsbuch sagt
> aber 16,72cm. Wo liegt mein Fehler?

Hallo,
was willst du hier mit dem Kosinussatz???
Du hast im Dreieck ABC den Winkel beta und die gegenüberliegende Seite e gegeben - ein klarer Fall für den Sinussatz!
Gruß Abakus

>  
> Die Diagonalen im Parallelogramm sind die Winkelhalbierende
> von [mm]\alpha[/mm] und [mm]\beta[/mm] oder?
>  
> [Dateianhang nicht öffentlich]


Bezug
                
Bezug
Kosinussatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:14 Mo 26.03.2012
Autor: Mathe-Andi

Ok danke.

Ich habe die Lösungen jetzt heraus, mit dem Sinussatz (SSW). Und da die kürzere Seite dem gegebenen Winkel gegenüberliegt, ist es der Sonderfall des SSW mit zwei möglichen Lösungen. Ich habe allerdings heraus, dass:

sin [mm] \alpha1 [/mm] = sin [mm] \alpha2 [/mm]

daher scheint es doch nur eine Lösung zu geben.

Mit dem Kosinussatz bekomme ich die Lösung nicht heraus!

Bezug
                        
Bezug
Kosinussatz: Antwort
Status: (Antwort) fertig Status 
Datum: 01:26 Mo 26.03.2012
Autor: leduart

Hallo
Dein Fehler: Die Diagonale halbiert den Winkel nicht!
Es sollte auch mit dem cos Satz gehen, [mm] a^2+b^2-2abcos\beta=e^2 [/mm]
eine quadratische Gleichung für [mm] b^2, [/mm] aber der sin-satz ist hier besser.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]