matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesKosten-, Erlös-, Gewinnfunktio
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Sonstiges" - Kosten-, Erlös-, Gewinnfunktio
Kosten-, Erlös-, Gewinnfunktio < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kosten-, Erlös-, Gewinnfunktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Mi 16.02.2011
Autor: Domee

Aufgabe
Im Angebotsmonopol beträgt die Säättigungsmenge 100 Mengeneinheiten, der Höchstpreis 5000,00€. Der Gesamtkostenverlauf des Anbieters ist linear. Bei x = 20 betragen die Gesamtkosten 80.000,00€, bei x=80 betragen sie 116.000,00€. Wie lautet die Gleichung der
a.) Erlösfunktion
b.) Gesamtkostenfunktion
c.) Gewinnfunktion
d.) Berechnen Sie die Gewinnschwelle und -grenze.

Hallo ihr Lieben,

bei der o.g. Aufgabe komme ich leider gar nicht weiter.
Beim Aufstellen der Erlösfunktion fallen schon enorme Probleme an.
Ich weiß, dass E(x) = p(x) *x ,
allerdings weiß ich nicht, was ich für p(x) geschweige denn  für x einsetzten soll.
Denkbar wäre für mich für x die größtmögliche Produktionsmenge einzusetzen, also 100.

        
Bezug
Kosten-, Erlös-, Gewinnfunktio: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mi 16.02.2011
Autor: weightgainer


> Im Angebotsmonopol beträgt die Säättigungsmenge 100
> Mengeneinheiten, der Höchstpreis 5000,00€. Der
> Gesamtkostenverlauf des Anbieters ist linear. Bei x = 20
> betragen die Gesamtkosten 80.000,00€, bei x=80 betragen
> sie 116.000,00€. Wie lautet die Gleichung der
>  a.) Erlösfunktion
>  b.) Gesamtkostenfunktion
>  c.) Gewinnfunktion
>  d.) Berechnen Sie die Gewinnschwelle und -grenze.
>  Hallo ihr Lieben,
>  
> bei der o.g. Aufgabe komme ich leider gar nicht weiter.
> Beim Aufstellen der Erlösfunktion fallen schon enorme
> Probleme an.
> Ich weiß, dass E(x) = p(x) *x ,
> allerdings weiß ich nicht, was ich für p(x) geschweige
> denn  für x einsetzten soll.
>  Denkbar wäre für mich für x die größtmögliche
> Produktionsmenge einzusetzen, also 100.


Hi,
es ist einfacher, als es aussieht.

1. Schritt: Der Erlös.
Du schreibst $E(x) = p(x) * x$. Damit meinst du doch, dass sich der Erlös bei einer bestimmten Stückzahl x dadurch ergibt, dass man die Stückzahl x mit dem Stückpreis p(x) multipliziert.
Das ist vielleicht die einzige "merkwürdige" Stelle, denn den Stückpreis musst du hier als konstant 5.000€ annehmen, sonst kannst du wenig machen.
Also gilt: $p(x) = 5.000$, hängt nicht von der Stückzahl ab.

Also ist die Erlösfunktion für x verkaufte Einheiten: $E(x) = 5000*x$.

2. Schritt: Gesamtkostenfunktion

Die soll linear sein, d.h. $K(x) = a*x + b$.

Du weißt schon, dass (20/80.000) und (80/116.000) die jeweiligen Kosten sind, d.h. du musst nur diese beiden Zahlenpaare einsetzen und dann a und b ausrechnen:

Start:
$  80.000 = a*20 + b$
$116.000 = a*80 + b$

Ende:
a = 600
b = 68.000

Also ist $K(x) = 600x + 68.000$

3. Schritt: Gewinnfunktion

Das ist jetzt natürlich leicht: $G(x) = E(x) - K(x) = 4.400x - 68.000$.

4. Schritt: Gewinnschwelle und -grenze:

Naja, wenn die 0 Einheiten verkaufen, dann machen sie genau 68.000€ Verlust, und pro Stück machen sie 4.400€ gut, d.h. sie müssen mindestens 16 Geräte verkaufen, um Gewinn zu machen (rechnerisch kommt 15,... raus, damit sie break even sind).

Da der Gewinn mit jeder verkauften Einheit wächst, liegt die Gewinngrenze also bei der maximalen Stückzahl von 100 - das eingesetzt ergibt 372.000€.

lg weightgainer

p.s. Ist schwierig, das zu erklären, ohne es direkt vollständig zu lösen - aber zumindest ordentlich aufschreiben musst du es noch :-)

Bezug
                
Bezug
Kosten-, Erlös-, Gewinnfunktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Mi 16.02.2011
Autor: Domee

Hallo,

wie kommst du denn bei:

3. Schritt: Gewinnfunktion

Das ist jetzt natürlich leicht: G(x) = E(x) - K(x) = 4.400x - 68.000.

auf die 4.400?

lg domee

Bezug
                        
Bezug
Kosten-, Erlös-, Gewinnfunktio: Antwort
Status: (Antwort) fertig Status 
Datum: 07:57 Do 17.02.2011
Autor: Pappus


> Hallo,
>
> wie kommst du denn bei:
>  
> 3. Schritt: Gewinnfunktion
>  
> Das ist jetzt natürlich leicht: G(x) = E(x) - K(x) =
> 4.400x - 68.000.
>
> auf die 4.400?
>  
> lg domee

Guten Morgen!

Ich trau mich eigentlich gar nicht, Dir zu sagen, wie das Ergebnis zustande gekommen ist ...

E(x) = 5000x
K(x) = 600x + 68000

und

G(x) = E(x) - K(x)

setz jetzt mal die entsprechenden Terme in die letzte Gleichung ein.

Gruß

Pappus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]