Kovarianz < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:47 Di 07.06.2011 | Autor: | sigmar |
Aufgabe | Sei X eine Zufallsvariable, sodass
P(X > 0) = [mm] \alpha, [/mm] P(X < 0) = [mm] \beta, [/mm] E[X] = a, E[|X|] = b.
Berechnen Sie die Kovarianz zwischen X und sign(X). |
Leider fehlt mir bei dieser Aufgabe bereits der Ansatz. Was Kovarianz ist weiß ich, aber mir ist noch nicht ganz klar was sign(X) sein soll. X ist ja keine reelle Zahl die positiv oder negativ sein kann.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:59 Di 07.06.2011 | Autor: | Infinit |
Hallo sigmar,
so wie die Aufgabe hier aussieht, ist X eine reelle Zufallsvariable, die irgendeinen Zufallsprozess auf reelle Zahlenwerte abbildet. Hierzu lässt sich dann auch eine Vorzeichenfunktion definieren, die normalerweise -1 ist für negative Zahlen und +1 für positive. Die 0 wird auf die Null abgebildet. Kommst Du damit jetzt weiter?
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Antwort) noch nicht fertig | Datum: | 14:51 Mi 08.06.2011 | Autor: | ana_ |
Hallo
für die sign-Funktion gilt:
[mm] sign(X)=\begin{cases} -1, & \mbox{für } X<0 \\ 1, & \mbox{für } X>0 \\ 0 & \mbox{für } X=0 \end{cases}
[/mm]
Setzt man das in die Formel für Kovarianz, so folgt:
C(X, [mm] sign(X))=\begin{cases} C(X, -1), & \mbox{für } X<0 \\ C(X, 1), & \mbox{für } X>0 \\ 0 & \mbox{für } X=0 \end{cases}
[/mm]
X<0: C(X, -1) = E(X*(-1)) - E(X)*E(-1) = E(-X) + E(X)
X>0: C(X, 1) = E(X*1) - E(X)*E(1) = E(X) - E(X) = 0
X=0: C(0, 0) = 0
Somit folgt:
C(X, [mm] sign(X))=\begin{cases} E(-X) + E(X), & \mbox{für } X<0 \\ 0 & \mbox{sonst } \end{cases}
[/mm]
Ist es soweit richtig?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:25 Fr 10.06.2011 | Autor: | Infinit |
Hallo ana_,
ich kann nicht so ganz nachvollziehen, was Du da gerechnet hast.
Ich kenne die Definition der Kovarianz von zwei Zufallsgrößen als
$ Cov(X,Y) = E((X-E(X)) (X-E(Y)) $
und in diesem Fall ist die Zufallsvariable Y nicht mehr so zufällug, sie ist nämlich, in Abhängigkeit von X, eine Konstante. Der Erwartungswert eine Konstanten ist sicherlich die Konstante selbst und so vereinfacht sich der obige Ausdruck entsprechend.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:50 Di 14.06.2011 | Autor: | sigmar |
Danke schonmal für eure Beiträge, ich hab jetzt nochmal ein bisschen rumprobiert, komme dabei allerdings auf ein recht triviales Ergebnis und gehe daher davon aus, dass mein Weg falsch ist. ;)
Mit
[mm] sign(X)=\begin{cases} -1, & \mbox{für } X<0 \\ 1, & \mbox{für } X>0 \\ 0, & \mbox{für } X=0 \end{cases}
[/mm]
und
Cov(X,Y) = E((X - E(X)*(Y - E(Y))
bin ich die einzelnen Fälle durchgegangen, komme dabei aber immer an die Stelle an der (Y - E(Y)) = (sign(X) - E(sign(X))) gleich 0 wird, da sign(X) doch = E(sign(X)) sein sollte. Damit wäre die Kovarianz in jedem Fall = 0 und das halte ich erstmal für falsch, alleine schon weil ich dann die ganzen schönen Definitionen wie von [mm] \alpha [/mm] und [mm] \beta [/mm] gar nicht bräuchte.
Wobei mir generell noch nicht klar ist an welcher Stell diese notwendig wären.
Beispielsweise wenn ich den Fall "X<0" betrachte, komme ich auf:
Cov(X,-1) = E(X - (-a)*(-1 - (-1)) = 0
Wo liegt mein Fehler?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:52 Mi 15.06.2011 | Autor: | Infinit |
Hallo sigmar,
Deine Überlegung ist zwar sehr naheliegend, aber nicht ganz richtig, wie ich meine.
Bei der Erwartungswertbildung geht es um den Erwartungswert über die neue Variable, und dieser Erwartungswert ist für die Signumfunktion Null, die Zufallsvariable nimmt aber, je nachdem ob X positiv oder negativ ist, den Wert 1 oder -1 an. Damit ist in Deinem Ausdruck E(Y)= 0 , Y selbst nimmt aber, in Abhängigkeit vom Vorzeichen von X, den Wert 1 oder -1 an. Dies gilt zumindest bei einer Gleichverteilung von X, dem ist aber nicht so, wenn ich die Auftretenswahrscheinlichkeiten mir ansehe. Dann sollte man mit diesen Auftretenswahrscheinlichkeiten den Erwartungswert gewichten.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:32 Mi 15.06.2011 | Autor: | sigmar |
Mir ist noch nicht ganz klar warum der Erwartungswert der Signumfunktion Null sein soll. Mir fallen hier zwei Ideen ein den Erwartungswert zu berechnen, aber beide führen zu einem anderen Ergebnis:
1) Abhängig von X ist sign(X) eine Konstante und der Erwartungswert einer Konstante ist doch die Konstante selber, also wäre E(sign(X)) = sign(X)
2) Ich gehe die drei Fälle vom Signum durch und gewichte diese je nach Wahrscheinlichkeit: E(sign(X)) = [mm] \alpha*1 [/mm] + [mm] \beta*(-1) [/mm] + (1 - [mm] (\alpha [/mm] + [mm] \beta) [/mm] * 0 = [mm] \alpha-\beta
[/mm]
Warum klappt das so nicht?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:53 Fr 17.06.2011 | Autor: | Infinit |
Hallo sigmar,
bei einer Gleichverteilung wäre der Erwartungswert über die Signumfunktion Null, dies ist aber nicht der Fall, wie Du richtig erkannt hast. Dann würde ich auch so vorgehen, wie Du vorgeschlagen hast, nämlich mit einer Gewichtung arbeiten.
Viele Grüße,
Infinit
|
|
|
|