matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikKraftfelder & Potenzial
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Kraftfelder & Potenzial
Kraftfelder & Potenzial < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kraftfelder & Potenzial: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:49 Mo 16.01.2012
Autor: murmel

Aufgabe
Gegeben sei das Kraftfeld

[mm]\vec F = \bruch{F_0}{a_0^2}\,\begin{pmatrix} y, z, 0 \end{pmatrix}[/mm]

[mm] $F_0 [/mm] = 1$ und [mm] $a_0^2 [/mm] = 1$

Abkürzung: $C = [mm] F_0/ a_0^2$ [/mm]

Finde das dazugehörige Potenzial!






Hallo ihr Abstrakten (lol),

Diese Aufgabe ist sehr abstrakt -dient der Klausurvorbereitung!



Der Gedanke:

Dieses Potenzial habe ich mir aus den Fingern gesogen.

Wenn alleine hier schon etwas falsch sein sollte, werdet ihr mir das bestimmt "sagen".

Das willkürlich gewählte Potenzial (wahrscheinlich nicht konservativ -hab es noch nicht über [mm] $\mathrm{rot} \vec [/mm] F$ überprüft) hat (dem Anschein nach -vgl. Aufgabe) ein Kraftfeld.

Das Potenzial selbst sollte so lauten:

$V [mm] \left( x,y,z \right) [/mm] = [mm] \bruch{V_0}{a_0^2}\left( x\,y + z\,y + y^2 \right)$ [/mm]

Mit [mm] $\hat [/mm] C = [mm] V_0/ a_0^2$ [/mm]

Ich müsste also über den gewählten Verfahrensweg wieder zurück auf das Potenzial zurückgeführt werden, da ich ja von

[mm] \vec{\nabla}\,V = \vec F = \bruch{F_0}{a_0^2}\,\begin{pmatrix} y, z, 0 \end{pmatrix} \mapsto V\left(x,y,z\right) = [/mm] zeilenweise integrieren muss!


Also

Vorschriften und Lösungen (dahinter stehend):


$I$ [mm] V\left( x,y,z \right) = - \int^{x'}\,F_x' \mathrm{d} x' + f\left(y,z\right) = - \hat C\,x\,y + \hat C\,f\left(y,z\right)[/mm]

$II$ [mm] V\left( x,y,z \right) = - \int^{y'}\,F_y' \mathrm{d} y' + f\left(x,z\right) = - \hat C\,y\,z + \hat C\,f\left(x,z\right) [/mm]

$III$ [mm] V\left( x,y,z \right) = - \int^{z'}\,F_z' \mathrm{d} z' + f\left(x,y\right) = \hat C\,f\left(x,y\right) [/mm]

Wobei [mm] $f\left(x,y\right)$, $f\left(x,z\right)$, $f\left(y,z\right)$ [/mm] Konstanten sein sollen die jeweils nur von der entsprechend anderen "Zeilengleichung" abhängig sein sollen.

Wie bekomme ich nun das Potenzial?

Für Hilfe bin ich wie eh und je dankbar!


Der Ansatz wurde, wenn ich das richtig verstanden habe, so gewählt, dass jeder Term der nur einmalig in allen drei Zeilen vorkommt als potentieller Summand für das Potenzial eingefasst wird. Terme die identisch in mindestens zwei Zeilen sind, werden als ein einziger Term in die Potenzialgleichung eingefasst.




        
Bezug
Kraftfelder & Potenzial: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:07 Mo 16.01.2012
Autor: murmel

Oh ja, das kann passieren, wenn man nicht aufpasst:


Das Potenzial lautet ja

[mm]V \left( x,y,z \right) = \bruch{V_0}{a_0^2}\left( x\,y + z\,y + y^2 \right)[/mm]

Die Kraft muss dann entsprechend dem Gradientenfeld


[mm]-\vec{\nabla}\,V \left( x,y,z \right) = \bruch{F_0}{a_0^2}\left( y , x+z+2\,y, y \right)[/mm]

lauten!

'Tschuldigung, die Frage hat sich dann erledigt!





Bezug
        
Bezug
Kraftfelder & Potenzial: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 18.01.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]