matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Kreisberechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Kreisberechnung
Kreisberechnung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisberechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:48 Sa 10.03.2007
Autor: Mathmark

Hallo zusammen !!!

Bin mal wieder auf ein interessantes Problem gestoßen:

Man nehme einen Kreis mit vorgegebenen Radius $r$.
Nun kann man in den Kreis ein Vieleck einschreiben, so dass die Ecken den Kreisrand berühren.Die Anzahl der Ecken sei $n$.

Wenn man nun die Anzahl der Ecken gegen unendlich laufen lässt, so gilt:
Der Flächeninhalt des Kreises ist gleich dem Flächeninhalt des Vielecks (um genau zu sein gilt: Für [mm] $n\to\infty$ [/mm] folgt [mm] $A_K\approx A_V$). [/mm]

Würde man nun den Radius bei Erhöhung der Eckenanzahl insofern vergrößern, damit die Käntenlänge des eingeschriebenen Vielecks EINS beträgt, hätte man dann nicht einen Kreis approximiert(für $n$ gegen unendlich) der eine Kantenlänge von EINS hat ?  

Gruß Mark

        
Bezug
Kreisberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Sa 10.03.2007
Autor: Mathmark

Äh,... wieso meldet sich den keiner

Bezug
        
Bezug
Kreisberechnung: Problem erkannt?
Status: (Antwort) fertig Status 
Datum: 22:11 Sa 10.03.2007
Autor: Loddar

Hallo Mark!


Ich weiß nicht, ob ich Deinen Ansatz richtig verstehe. Aber bei Deiner Idee erzeuge ich doch einen Kreis, der kein festes (und vorgegebenes) $r_$ besitzt, sondern einen Kreis mit unendlich großem Umfang bzw. Radius.


Gruß
Loddar


Bezug
                
Bezug
Kreisberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:54 So 11.03.2007
Autor: Mathmark

Hallo Loddar !!!

Ja genau.........

Falls sich die Eckenanzahl erhöht, muss man ja den Radius [mm] $r_0$ [/mm] erhöhen, damit die Kantenlänge $a$ EINS beträgt.

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: eps) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]