Kreise auf Umfang < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:14 Mo 23.05.2011 | Autor: | Ferma |
Hallo,
ich soll 99 Kreise mir Radius r, die ihren jeweiligen Mittelpunkt auf dem Kreisumfang des Kreises mit dem Radius R haben, anordnen. Alle Kreise auf dem Umfang müssen tangieren. Wie berechnet man R?
Mein Ansatz: ein 99-Eck mit der Seite 2r. Das kann aber nicht (ganz) richtig sein, weil die Sehne geringfügig kleiner als 2r ist.
Gruß, Ferma
|
|
|
|
Hallo Ferma,
das ist doch schon ganz gut.
> ich soll 99 Kreise mir Radius r, die ihren jeweiligen
> Mittelpunkt auf dem Kreisumfang des Kreises mit dem Radius
> R haben, anordnen. Alle Kreise auf dem Umfang müssen
> tangieren. Wie berechnet man R?
> Mein Ansatz: ein 99-Eck mit der Seite 2r. Das kann aber
> nicht (ganz) richtig sein, weil die Sehne geringfügig
> kleiner als 2r ist.
Doch, der Ansatz ist gut, wenn Du die Sehne genau als 2r ansetzt. Dann ist R der Radius des Umkreises des 99-Ecks.
Es genügt dann, einen Ausschnitt des Polygons zu betrachten, ein Dreieck, das aus zwei benachbarten Ecken und dem Mittelpunkt gebildet wird. Es ist gleichschenklig, eine Seite hat die Länge 2r, zwei Seiten die Länge R. Diese beiden (langen) Seiten schließen den Winkel [mm] \tfrac{2}{99}\pi [/mm] ein bzw. [mm] \tfrac{40}{11} [/mm] Grad (°).
Grüße
reverend
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:46 Di 24.05.2011 | Autor: | Ferma |
Hallo,
angenommen die 99 Kreise(r=1) sind auf dem theoretischen Kreis angeordnet. Ein gleich großer Kreis(r=1) wird über die 99 Kreise, außen gerollt. Wieviele Male dreht sich dieser letzt genannte Kreis dabei? Mein Ansatz: Die Länge des Bogens zwischen 2 sukzessiven Tangenspunkten mal 99. Dieser Bogen hat den Zentrumswinkel 360-(Basiswinkelx2)-120.
Basiswinkel=(1-2/99)x90. Die gesuchte Länge des Bogens ist also 1,1101.
Die Frage: Wenn man den großen Kreis verform-die kleinen Kreise tangieren-
bleibt der Abrollweg konstant?
Gruß, Ferma
|
|
|
|
|
Hallo Ferma,
das solltest Du mit etwas Detail vorrechnen und vor allem lesbarer schreiben!
> angenommen die 99 Kreise(r=1) sind auf dem theoretischen
> Kreis angeordnet. Ein gleich großer Kreis(r=1) wird über
> die 99 Kreise, außen gerollt.
Das Komma stört das Satzverständnis und ist in jeder Hinsicht zuviel.
> Wieviele Male dreht sich
> dieser letzt genannte Kreis dabei? Mein Ansatz: Die Länge
> des Bogens zwischen 2 sukzessiven Tangenspunkten mal 99.
Falls "Tangenspunkte" die Punkte sind, an denen der "rollende" Kreis zwei benachbarte andere Kreise gleichzeitig berührt, ist Dein Ansatz richtig.
> Dieser Bogen hat den Zentrumswinkel
> 360-(Basiswinkelx2)-120.
> Basiswinkel=(1-2/99)x90.
Das kann ich im Moment weder lesen noch nachvollziehen.
> Die gesuchte Länge des Bogens
> ist also 1,1101.
Der Wert ist aber sehr plausibel, insofern könnte die Rechnung auch stimmen. Mich irritiert die Zahl 90 darin, aber vielleicht geht die ja auf eine 360 zurück...
> Die Frage: Wenn man den großen Kreis verform-die kleinen
> Kreise tangieren-
> bleibt der Abrollweg konstant?
Gute Frage, aber keine einfache. Soweit ich mich erinnere, ist das bei infinitesimalen Änderungen so, aber ab einer gewissen Stärke der Verformung nicht mehr unbedingt, z.B. wenn ein Kreis so weit "nach innen gequetscht" wird, dass der rollende Kreis nicht mehr alle anderen Kreise nacheinander berührt.
Für kleine Änderungen genügt aber eine einfache Überlegung, die mit der Summe aller Abrollwinkel zu tun hat. Denk mal drüber nach, das kriegst Du allein hin.
Grüße
reverend
|
|
|
|