matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieKreismittelpunkt, Kreissegment
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Kreismittelpunkt, Kreissegment
Kreismittelpunkt, Kreissegment < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreismittelpunkt, Kreissegment: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 So 27.06.2010
Autor: Fuechsl

Aufgabe
Gegeben ist ein Halbkreis um Mittelpunkt M(0/0) mit Bogenlänge b. Es soll ein Kreissegment gezeichnet werden, dessen Sehne 2a lang ist und deren Bogenlänge ebenfalls b beträgt.

Ich habe folgende Gleichungen hergeleitet (x = x-Koordinate des Mittelpunktes des Kreissegments):

Zentriwinkel [mm] \phi [/mm] = [mm] \bruch{b}{r} [/mm] = [mm] atan(\bruch{a}{x}) [/mm] mit [mm] r=\wurzel{a^2+x^2} [/mm]

Wie löse ich diese Gleichung nach x auf? Sobald ich die ganze Gleichung in den Tangens nehme, habe ich das x links in diesem mühsamen Wurzelterm...

Ich möchte das in Geogebra konstruieren, es können also algebraische wie geometrische Lösungen zum Einsatz kommen.

Vielen Dank im Voraus und freundliche Grüsse

Martin Lacher


        
Bezug
Kreismittelpunkt, Kreissegment: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 So 27.06.2010
Autor: abakus


> Gegeben ist ein Halbkreis um Mittelpunkt M(0/0) mit
> Bogenlänge b. Es soll ein Kreissegment gezeichnet werden,
> dessen Sehne 2a lang ist und deren Bogenlänge ebenfalls b
> beträgt.
>  Ich habe folgende Gleichungen hergeleitet (x =
> x-Koordinate des Mittelpunktes des Kreissegments):
>  
> Zentriwinkel [mm]\phi[/mm] = [mm]\bruch{b}{r}[/mm] = [mm]atan(\bruch{a}{x})[/mm] mit
> [mm]r=\wurzel{a^2+x^2}[/mm]
>  
> Wie löse ich diese Gleichung nach x auf? Sobald ich die
> ganze Gleichung in den Tangens nehme, habe ich das x links
> in diesem mühsamen Wurzelterm...

Hallo,
das dürfte nicht als geschlossener Lösungsterm darstellbar sein, somit ist es auch nicht elementar konstruierbar.
Numerisch ist es allerdings lösbar.
Mit Geogebra kannst du konkret
1) die Funktionen [mm] \phi=f(x)=atan(a/x) [/mm] und  [mm] \phi=g(x)=\bruch{b}{a^2+x^2} [/mm] darstellen und deren Schnittpunkt ablesen -->damit hast du das gesuchte x
2) einen Halbkreis über den Punkten (r,0) und (-r,0) erzeugen, die Bogemnlänge ablesen; zwei parallele Geraden x=a und x=-a sowie dern Schnittpunkte mit dem Halbkreis erzeugen; einen Bogen zwischen den Schnittpunkten anlegen; den ursprünglichen Halbkreis so ziehen, bis dieser Bogen die benötigte Länge hat.
Gruß Abakus

>  
> Ich möchte das in Geogebra konstruieren, es können also
> algebraische wie geometrische Lösungen zum Einsatz
> kommen.
>  
> Vielen Dank im Voraus und freundliche Grüsse
>  
> Martin Lacher
>  


Bezug
                
Bezug
Kreismittelpunkt, Kreissegment: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Di 29.06.2010
Autor: Fuechsl

Danke vielmals für die Antwort. Eine Frage zu 2: Wie kann ich einen Halbkreis über (-r/0) und (r/0) konstruieren, wenn ich r nicht weiss (weil ja darin x enthalten ist!)?

Freundlicher Gruss

Martin Lacher

Bezug
                        
Bezug
Kreismittelpunkt, Kreissegment: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Di 29.06.2010
Autor: abakus


> Danke vielmals für die Antwort. Eine Frage zu 2: Wie kann
> ich einen Halbkreis über (-r/0) und (r/0) konstruieren,
> wenn ich r nicht weiss (weil ja darin x enthalten ist!)?

Klicke mit dem Punktwerkzeug auf die x-Achse. Damit erzeugst du dort einen Punkt A.
Gib in die Eingabezeile ein:
B=-A
Damit erzeugst du einen Punkt mit entgegengesetzter x-Koordinate (das geht natürlich auch über eine Punktspiegelung von A am Ursprung oder mit einer Geradenspiegelung von A an der y-Achse).
Mit dem Werkzeug "Halbkreis durch zwei  Punkte" klickst du auf beide Punkte.
Anschließend kannst du am Punkt A ziehen und damit jeden gewünschten Radius für den erzeugten Halbkreis einstellen.
Gruß Abakus

>  
> Freundlicher Gruss
>  
> Martin Lacher


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]