matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenKreuzprodukt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Kreuzprodukt
Kreuzprodukt < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreuzprodukt: Idee
Status: (Frage) beantwortet Status 
Datum: 11:47 Do 02.12.2010
Autor: Timberbell

Aufgabe
Kreuzprodukt schneller rechnen ?

Hallo,

meine Frage lautet wie ich das Kreuzprodukt mit Variabeln und Einheitsvektoren schneller rechnen kann, als die übliche Weise.

Vielen Dank!

Timberbell

        
Bezug
Kreuzprodukt: "übliche Weise"?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:52 Do 02.12.2010
Autor: Loddar

Hallo Timberbell!


Was ist denn Deine "übliche Weise"?


Gruß
Loddar


Bezug
        
Bezug
Kreuzprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Do 02.12.2010
Autor: Adamantin

Wie Loddar schon sagt, ist deine Frage leider wenig genau ;)

Prinzipiell gibt es zwei Ansätze:

1. Du rechnest es in der Spaltendarstellung der Vektoren, dann kann man sich helfen, indem man die ersten beiden Zahlen des Vektors jeweils untendrunter schreibt, also:

[mm] $\vektor{ 1 \\ 2 \\ 3 \\ \green{1} \\ \green{2}} \times \vektor{ 3 \\ 4 \\ 5 \\ \green{3} \\ \green{4} }$ [/mm]


Dann fängt man ja in der Mitte mit 2*5-3*4 an und kann einfach die nächste Zeile nehmen, also 3*3-1*5 und 1*4-2*3, das geht ziemlich gut.

2. du nutzt die Determinantenrechnung aus und dazu die Regel von Sarrus, im Grunde nix anderes, aber da man von links nach rechts lesen kann, passieren vielleicht weniger Fehler:

$ [mm] \vmat{ e_x & e_y & e_z \\ 1 & 2 & 3 \\ 3 & 4 & 5 } [/mm] $

Diese Determinante gelöst ergibt zwar zunächst keinen Vektor, aber wenn das Ergebnis z.B. [mm] 5e_x+7e_z-10e_z [/mm] wäre, so sind die Koeffizienten einfach die Vektorkoordinaten des Spaltenvektors, also [mm] \vektor{5 \\ 7 \\ -10} [/mm]


Bezug
                
Bezug
Kreuzprodukt: Kreuzprodukt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Sa 04.12.2010
Autor: Timberbell

Hallo,

zunächst einmal Danke das ihr mir geantwortet habt.

Mit üblicher Vorgehensweise (für mich) meine ich wohl diese.
( a1 a2 [mm] a3)^T [/mm] x ( b1 b2 [mm] b3)^T [/mm] = ( a2b3 - a3b2.....)

Kann man diese einzelnen Koordinaten der Vektoren nicht in Reihe schreiben und diese den Einheitsvektoren zu ordnen.

zb.

Meine Vektoren ( 0 0 2w ) x ( r*sin(phi)*s(t) , r*cos(phi), 0 )

2w, rsin , rcos, ex, ey, ez

Irgendwie wurde das dann miteinander multipliziert oder addiert. Keine Ahnung. Das hilft euch wahrscheinlich nicht weiter.
Vielleicht sollte ich besser aufpassen. Wäre Vorteilhafter für mich.
Am Besten frage ich noch mal nach.

Trotzdem Danke

Timberbell



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]