Kreuzprodukt < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:29 Sa 21.01.2012 | Autor: | Lu- |
Aufgabe | Beweise folgende Eigenschaft das Kreuzproduktes:
x,y,z [mm] \in \IK
[/mm]
(x [mm] \times y)^t [/mm] z = [mm] x^t [/mm] (y [mm] \times [/mm] z ) |
Was bedeutet dieses hoch t bei den Vektoren?=
(x [mm] \times y)^t [/mm] z = [mm] \vektor{x_2y_3-x_3y_2\\ x_3y_1-x_1y_3\\x_1y_2-x_2y_1}^t [/mm] * [mm] \vektor{z_1 \\ z_2\\z_3}
[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:41 Sa 21.01.2012 | Autor: | M.Rex |
Hallo
n-komponentige Vektoren sind mathematisch gesehen nichts anderes als [mm] n$\times$1-Matrizen.
[/mm]
Und das Skalarprodukt ist auch nur ein Spezialfall der Matrixmultiplikation. Diese geht aber nur, wenn man eine [mm] r$\times$s-Matrix [/mm] mit einer [mm] s$\times$t-Matrix [/mm] multipliziert, das Ergebnis ist dann eine [mm] r$\times$t-Matrix.
[/mm]
Um das zu erreichen, transponiert man also den ersten Vektor in eine [mm] 1$\times$n-Matrix, [/mm] die man dann mit der folgenden [mm] n$\times$1-Matrix [/mm] zu einer [mm] 1$\times$1-Matrix, [/mm] also einem Skalar multiplizieren kann.
Marius
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:02 Sa 21.01.2012 | Autor: | Lu- |
(x $ [mm] \times y)^t [/mm] $ z = $ [mm] \vektor{x_2y_3-x_3y_2\\ x_3y_1-x_1y_3\\x_1y_2-x_2y_1}^t [/mm] $ * $ [mm] \vektor{z_1 \\ z_2\\z_3} [/mm] $= [mm] \pmat{ x_2y_3-x_3y_2 &x_3y_1-x_1y_3 & x_1y_2-x_2y_1} [/mm] * [mm] \vektor{z_1 \\ z_2\\z_3} =\pmat{ (x_2y_3-x_3y_2) *z_1+(x_3y_1-x_1y_3)z_2+( x_1y_2-x_2y_1)*z_3} =\pmat{ x_2y_3z_1-x_3y_2z_1 +x_3y_1z_2-x_1y_3z_2+x_1y_2z_3-x_2y_1z_3} [/mm]
Wie komme ich nun weiter auf: $ [mm] x^t [/mm] $ (y $ [mm] \times [/mm] $ z ) , kann man das weiter umformen? Ich möchte eigentlich das oben schaffen umzuformen auf die rechte seite.
LG
|
|
|
|
|
> (x [mm]\times y)^t[/mm] z = [mm]\vektor{x_2y_3-x_3y_2\\ x_3y_1-x_1y_3\\x_1y_2-x_2y_1}^t[/mm]
> * [mm]\vektor{z_1 \\ z_2\\z_3} [/mm]= [mm]\pmat{ x_2y_3-x_3y_2 &x_3y_1-x_1y_3 & x_1y_2-x_2y_1}[/mm]
> * [mm]\vektor{z_1 \\ z_2\\z_3} =\pmat{ (x_2y_3-x_3y_2) *z_1+(x_3y_1-x_1y_3)z_2+( x_1y_2-x_2y_1)*z_3} =\pmat{ x_2y_3z_1-x_3y_2z_1 +x_3y_1z_2-x_1y_3z_2+x_1y_2z_3-x_2y_1z_3}[/mm]
> Wie komme ich nun weiter auf: [mm]x^t[/mm] (y [mm]\times[/mm] z ) , kann man
> das weiter umformen? Ich möchte eigentlich das oben
> schaffen umzuformen auf die rechte seite.
Hallo,
multipliziere doch den zweiten Ausdruck, also [mm] x^t*(y\times{z}) [/mm] ,
ebenfalls in Komponenten aus und zeige dann, dass
das neue Resultat mit dem ersten Resultat überein-
stimmt.
Analogie: um einen langen Tunnel zu bohren, fängt
man auch auf beiden Seiten an !
LG Al-Chw.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:29 Sa 21.01.2012 | Autor: | Lu- |
okay danke hat geklappt.
Ich hab noch ein zweites Bsp wo ich nicht weiterkomme
( x [mm] \times [/mm] y) [mm] \times [/mm] z = [mm] (z^t x)y-(y^t [/mm] z)x
linke seite hab ich geschafft
rechte seite:
[mm] (z^t x)y-(y^t [/mm] z)x [mm] =(\vektor{z_1 & z_2 & z_3} *\vektor{x_1 \\ x_2\\x_3}) *\vektor{y_1 \\ y_2\\y_3} -(\vektor{y_1 & y_2 & y_3} *\vektor{z_1 \\ z_2\\z_3}) *\vektor{x_1 \\ x_2\\x_3} [/mm] = [mm] (z_1*x_1+z_2*x_2+z_3*x_3) [/mm] * [mm] \vektor{y_1 \\ y_2\\y_3} [/mm] - [mm] (y_1z_1+y_2z_2+y_3z_3)*\vektor{x_1 \\ x_2\\x_3}
[/mm]
Hab ich was falsch gemacht? Da die Multiplikation nicht funktioniert am schluß!!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:46 Sa 21.01.2012 | Autor: | ich_ich |
> rechte seite:
> [mm](z^t x)y-(y^t[/mm] z)x [mm]=(\vektor{z_1 & z_2 & z_3} *\vektor{x_1 \\ x_2\\x_3}) *\vektor{y_1 \\ y_2\\y_3} -(\vektor{y_1 & y_2 & y_3} *\vektor{z_1 \\ z_2\\z_3}) *\vektor{x_1 \\ x_2\\x_3}[/mm] = [mm](z_1*x_1+z_2*x_2+z_3*x_3)[/mm] * [mm]\vektor{y_1 \\ y_2\\y_3}[/mm] -
[mm](y_1z_1+y_2z_2+y_3z_3)*\vektor{x_1 \\ x_2\\x_3}[/mm]
Stimmt soweit....[mm] (y_1z_1+y_2z_2+y_3z_3) [/mm] und [mm] (z_1*x_1+z_2*x_2+z_3*x_3) [/mm] sind keine Vektoren sondern Skalare...! (Und wenn du einen Vektor mit einem Skalar multiplizierst, dann musst du jede Komponente des Vektors mit dem Skalar multiplizieren....
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:00 Sa 21.01.2012 | Autor: | Lu- |
ah okay, vielen lieben dank
|
|
|
|