matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesKreuzprodukt bei Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Kreuzprodukt bei Mengen
Kreuzprodukt bei Mengen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreuzprodukt bei Mengen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 07:47 Di 24.10.2017
Autor: Tobikall

Aufgabe
Seien A;B;M und N Mengen. Zeigen Sie:
(a) (MxN) u  (A x B) ist Teilmenge aus (M u A) x (N u B)
(b) Falls in (a) Gleichheit gilt und weder M c A noch A c M gilt, so ist N = B.


Eine Skizze kann hier hilfreich sein (nehmen Sie dazu an, dass alle Teilmengen Intervalle auf
R sind, und stellen Sie die Produktmengen in der Ebene dar.

Hallo liebe Gemeinde,

Könnte mir vielleicht noch jemand bei dieser Aufgabe helfen, denn da komme ich nicht richtig weiter. Die Skizze habe ich und vorstellen kann ich es mir auch, nur weiß ich nicht, wie man das bei a) beweist oder bei b) den Ansatz für die Gleichheit findet. Man muss ja N ist Teilmenge von B und B ist Teilmenge von N beweisen, nur finde ich da keinen richtigen Ansatz.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Kreuzprodukt bei Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:36 Di 24.10.2017
Autor: fred97


> Seien A;B;M und N Mengen. Zeigen Sie:
>  (a) (MxN) u  (A x B) ist Teilmenge aus (M u A) x (N u B)
>  (b) Falls in (a) Gleichheit gilt und weder M c A noch A c
> M gilt, so ist N = B.
>  
>
> Eine Skizze kann hier hilfreich sein (nehmen Sie dazu an,
> dass alle Teilmengen Intervalle auf
>  R sind, und stellen Sie die Produktmengen in der Ebene
> dar.
>  Hallo liebe Gemeinde,
>  
> Könnte mir vielleicht noch jemand bei dieser Aufgabe
> helfen, denn da komme ich nicht richtig weiter. Die Skizze
> habe ich und vorstellen kann ich es mir auch, nur weiß ich
> nicht, wie man das bei a) beweist oder bei b) den Ansatz
> für die Gleichheit findet. Man muss ja N ist Teilmenge von
> B und B ist Teilmenge von N beweisen, nur finde ich da
> keinen richtigen Ansatz.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Sei $X:=(M [mm] \times [/mm] N) [mm] \cup [/mm] (A [mm] \times [/mm] B)$ und $Y:=(M [mm] \cup [/mm] A) [mm] \times [/mm] (N [mm] \cup [/mm] B)$.

Zu zeigen ist $X [mm] \subseteq [/mm] Y$.

Also nehmen wir und ein $(u,v) [mm] \in [/mm] X$ her. Zu zeigen ist: $(u,v) [mm] \in [/mm] Y$.

Nun gibt es zwei Fälle:

1. Fall:  $(u,v) [mm] \in [/mm] M [mm] \times [/mm] N$. Dann ist $u [mm] \in [/mm] M$ und $v [mm] \in [/mm] N$. Dann haben wir aber auch $u [mm] \in [/mm] M [mm] \cup [/mm] A$ und $v [mm] \in [/mm] N [mm] \cup [/mm] B$. Das zeigt: $(u,v) [mm] \in [/mm] Y$.

2.  Fall:  $(u,v) [mm] \in [/mm] A [mm] \times [/mm] B$. Diesen Fall erledigst Du !

Erledige das mal, dann sehen wir weiter.

Bezug
                
Bezug
Kreuzprodukt bei Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:38 Di 24.10.2017
Autor: Tobikall

Erstmal schonmal danke für Deine Hilfe.

Beim 2.  Fall ist ja dann [mm] (u,v)\varepsilon [/mm] AxB und somit ist u [mm] \varepsilon [/mm] A und v [mm] \varepsilon [/mm] B und da wir ja auch haben : $ u [mm] \in [/mm] M [mm] \cup [/mm] A $ und $ v [mm] \in [/mm] N [mm] \cup [/mm] B $ zeigt das, dass $ (u,v) [mm] \in [/mm] Y $ ist.

Ist das richtig und reicht das?


Bezug
                        
Bezug
Kreuzprodukt bei Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 Di 24.10.2017
Autor: fred97


> Erstmal schonmal danke für Deine Hilfe.
>  
> Beim 2.  Fall ist ja dann [mm](u,v)\varepsilon[/mm] AxB und somit
> ist u [mm]\varepsilon[/mm] A und v [mm]\varepsilon[/mm] B und da wir ja auch
> haben : [mm]u \in M \cup A[/mm] und [mm]v \in N \cup B[/mm] zeigt das, dass
> [mm](u,v) \in Y[/mm] ist.
>  
> Ist das richtig und reicht das?

Ja, das passt.

>  


Bezug
        
Bezug
Kreuzprodukt bei Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Di 24.10.2017
Autor: tobit09

Hallo Tobikall,


zu b):

Gelte also [mm] $(M\times N)\cup(A\times B)=(M\cup A)\times(N\cup [/mm] B)$ und weder [mm] $A\subseteq [/mm] M$ noch [mm] $M\subseteq [/mm] A$.
Zu zeigen ist $N=B$.

Die Voraussetzung, dass $A$ keine Teilmenge von $M$ ist, bedeutet, dass ein [mm] $a\in [/mm] A$ mit [mm] $a\notin [/mm] M$ existiert.

Um nun [mm] $N\subseteq [/mm] B$ nachzuweisen sei [mm] $n\in [/mm] N$ beliebig vorgegeben.
Zu zeigen ist [mm] $n\in [/mm] B$.

Wegen [mm] $a\in M\cup [/mm] A$ und [mm] $n\in N\cup [/mm] B$ gilt [mm] $(a,n)\in(M\cup A)\times(N\cup B)=(M\times N)\cup(A\times [/mm] B)$.

Kommst du mit diesem Anfang weiter?


Viele Grüße
Tobias

Bezug
                
Bezug
Kreuzprodukt bei Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:32 Mi 25.10.2017
Autor: Tobikall

so richtig weiß ich noch nicht, wie es jetzt weitergehen soll?!


Bezug
                        
Bezug
Kreuzprodukt bei Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:52 Mi 25.10.2017
Autor: tobit09

Wir haben also [mm] $(a,n)\in (M\times N)\cup (A\times [/mm] B)$.

Das bedeutet nach Definition von [mm] $\cup$, [/mm] dass [mm] $(a,n)\in M\times [/mm] N$ oder [mm] $(a,n)\in A\times [/mm] B$ gelten muss.

Der Fall [mm] $(a,n)\in M\times [/mm] N$ kann jedoch nicht gelten, denn dann wäre [mm] $a\in [/mm] M$ im Widerspruch zur Wahl von a.

Also muss der Fall [mm] $(a,n)\in A\times [/mm] B$ vorliegen.

Also [mm] $n\in [/mm] B$.


Damit ist [mm] $N\subseteq [/mm] B$ gezeigt.

Bezug
                                
Bezug
Kreuzprodukt bei Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:59 Mi 25.10.2017
Autor: Tobikall

Vielen Dank für die Antwort, ich wusste nicht, dass die Aufgabe so einfach ist, aber manchmal schaffe ich es einfach nicht auf die richtige Lösung zu kommen.

Viele grüße TobiKall

Bezug
                                        
Bezug
Kreuzprodukt bei Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:08 Do 26.10.2017
Autor: Tobikall

Ich hab mir die Aufgabe gerade nochmal angeschaut.
Muss man nicht auch noch beweisen, dass b aus der Menge B ein Element von N ist, damit N=B gilt?
Und wie macht man das?

Bezug
                                                
Bezug
Kreuzprodukt bei Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Do 26.10.2017
Autor: fred97


> Ich hab mir die Aufgabe gerade nochmal angeschaut.
>  Muss man nicht auch noch beweisen, dass b aus der Menge B
> ein Element von N ist, damit N=B gilt?

Ja.


>  Und wie macht man das?

Fast genauso !

Oben wurde benutzt: $ A $ ist  keine Teilmenge von $ M $ . Dann folgte: N ist Teilmenge von B.

Wir haben auch noch: $ M $ ist  keine Teilmenge von $ A$ .

Dann bekommst Du (und das mach mal selbst !): B ist Teilmenge von N.



Bezug
                                                        
Bezug
Kreuzprodukt bei Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 Do 26.10.2017
Autor: Tobikall

Ok jetzt hab ichs hinbekommen, vielen Dank nochmal!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]