matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesKriterien affiner Unterraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Kriterien affiner Unterraum
Kriterien affiner Unterraum < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kriterien affiner Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:04 Di 02.06.2020
Autor: rubi

Hallo zusammen,

mir ist bekannt, dass ein affiner Unterraum ein Raum W = a + U, wobei U ein Untervektorraum ist.

Mir sind auch die Kriterien bekannt, um Mengen auf Untervektorraumeigenschaft zu überprüfen:
1.) Ist der Nullvektor enthalten ?
2.) Ist die Menge abgeschlossen bzgl. + ?
3.) Ist die Menge abgeschlossen bzgl. der Multiplikation mit einem
Körper K ?

Was ich aber nicht weiß ist, mit welchen Kriterien man eine Menge daraufhin überprüft, ob sie einen affinen Unterraum darstellt (und keine klassische Gerade- oder Ebenengleichung aus der Schulmathematik darstellt, da mir hier klar ist, dass es ein affiner Unterraum ist).

z.B.
M = [mm] \{(x_1,x_2,x_3) \in \IR^3: x_1 + x_2 + x_3 <=1 \} [/mm]
N = [mm] \{(x_1,x_2,x_3) \in \IR^3: x_1 = 1 oder x_3 = 1 \} [/mm]

Dies sind scheinbar keine affinen Unterräume, aber wie zeigt man dies genau?

Danke für eure Antworten.

Viele Grüße
Rubi



        
Bezug
Kriterien affiner Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:58 Di 02.06.2020
Autor: fred97


> Hallo zusammen,
>
> mir ist bekannt, dass ein affiner Unterraum ein Raum W = a
> + U, wobei U ein Untervektorraum ist.
>
> Mir sind auch die Kriterien bekannt, um Mengen auf
> Untervektorraumeigenschaft zu überprüfen:
> 1.) Ist der Nullvektor enthalten ?
>  2.) Ist die Menge abgeschlossen bzgl. + ?
>  3.) Ist die Menge abgeschlossen bzgl. der Multiplikation
> mit einem
>  Körper K ?
>  
> Was ich aber nicht weiß ist, mit welchen Kriterien man
> eine Menge daraufhin überprüft, ob sie einen affinen
> Unterraum darstellt (und keine klassische Gerade- oder
> Ebenengleichung aus der Schulmathematik darstellt, da mir
> hier klar ist, dass es ein affiner Unterraum ist).
>
> z.B.
> M = [mm]\{(x_1,x_2,x_3) \in \IR^3: x_1 + x_2 + x_3 <=1 \}[/mm]
>  N =
> [mm]\{(x_1,x_2,x_3) \in \IR^3: x_1 = 1 oder x_3 = 1 \}[/mm]
>  
> Dies sind scheinbar keine affinen Unterräume, aber wie
> zeigt man dies genau?

Zu M:

wir nehmen an, M sei ein affiner Unteraum. Dann ex ein $a [mm] \in \IR^3$ [/mm] und ein Untervektorraum U mit

$M=a+U.$

Nun gibt es 4 Fälle:

Fall i: [mm] $\dim [/mm] U=i$   (i=0,1,2,3).

Ist i=0, so ist [mm] $M=\{a\}$. [/mm] Dieser Fall scheidet aus.

Ist i=1, so ist M eine Gerade, dieser Fall scheidet auch aus (warum ?)

Ist i=2, so ist M eine Ebene, dieser Fall scheidet auch aus (warum ?)

Ist i=3, so ist M= [mm] \IR^3, [/mm] dieser Fall scheidet auch aus (warum ?)



Genauso kannst Du mit N verfahren.

>  
> Danke für eure Antworten.
>
> Viele Grüße
>  Rubi
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]