matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikKritische Reglerverstärkung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Regelungstechnik" - Kritische Reglerverstärkung
Kritische Reglerverstärkung < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kritische Reglerverstärkung: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 15:27 So 28.03.2010
Autor: bamm

Aufgabe 1
Geg.: Kanonischer Regelkreis
...
1.4 a) Skizzieren Sie das Bode-Diagramm zu [mm] F_0(j \omega) [/mm] in das Diagramm in Anhang 1
b) Ermitteln Sie nun mit Hilfe des Bode-Diagramms die Amplitudenreserve [mm] A_{R,db}, [/mm] die Phasenreserve [mm] \varphi_R [/mm] und die kritische Reglerverstärkung [mm] K_{R,krit} [/mm] des Regelkreises.

Aufgabe 2
1.5 Berechnen Sie die Kreisfrequenz [mm] \omega_{krit} [/mm] der Dauerschwingungen an der Stabilitätsgrenze und die zugehörige kritische Reglerverstärkung [mm] K_{R,krit}. [/mm]  

Hallo,
erstmal kurz zum Verständnis der Aufgabenstellung: Den genauen Regelkreis hab ich jetzt mal weggelassen, da dieser nicht wichtig ist für mein Problem (denke ich zumindest...)
Ich habe ein Problem damit den Unterschied zwischen der kritischen Reglerverstärkung von Aufgabe 1.4b) und der kritischen Reglerverstärkung von Aufgabe 1.5 zu verstehen. Soweit ich das verstanden habe, kommt es ja bei bei der kritischen Reglerverstärkung zu Eigenschwingungen, was ja auch in Aufgabe 1.5 so erwähnt wird. Was ist also der Unterschied zwischen der krit. Reglerverstärkung in 1.4b) und der in 1.5?
Die Lösungen zu diesen beiden Aufgaben sind mir auch bekannt, hier mal in Kurzform, mir hilft das bei meinem Verständnisproblem allerdings nicht so recht weiter:

von Aufgabe 1.3 kommt noch als Lösung
[mm] F_0 [/mm] = [mm] \bruch{8}{s (s+4)^2} [/mm]

1.4 b) [mm] A_{R,dB} [/mm] = 16dB; [mm] \varphi_R [/mm] = 90°; [mm] K_{R,krit} [/mm] = [mm] K_R \cdot A_R [/mm] = 8 [mm] \cdot 10^{\bruch{16}{20}} [/mm] = 50,5

1.5 [mm] arg\left\{F_0({j \omega_{krit}})\right\} [/mm] = - [mm] \bruch{\pi}{2} [/mm] - 2 [mm] \cdot [/mm] arctan(0,25 [mm] \omega_{krit}) \begin{matrix} ! \\ = \end{matrix} [/mm] - [mm] \pi \Rightarrow w_{krit} [/mm] = 4
[mm] \left|F_0(j \omega_{krit}, K_{R,krit})\right| [/mm] = [mm] \left|\bruch{K_{R,krit}}{j \omega_{krit} (j \omega_{krit} + 4)^2}\right| [/mm] = [mm] \bruch{K_{R,krit}}{4 (4^2 + 4^2)} \begin{matrix} ! \\ = \end{matrix} [/mm] 1 [mm] \Rightarrow K_{R,krit} [/mm] = 128

        
Bezug
Kritische Reglerverstärkung: Zwei Schreibweisen
Status: (Antwort) fertig Status 
Datum: 17:01 Di 30.03.2010
Autor: Infinit

Halo bamm,
aus meiner Sicht gibt es keinen Unterschied in der Betrachtung der kritischen Reglerverstärkung, es ist nur eine Frage der Schreibweise, wie man was ausdrückt.
Die kritische Verstärkung ist dann erreicht, wenn das rückgekoppelte Signal gerade eine Amplitude von 1 erreicht, denn dann wird durch das Minuszeichen am Eingang des Regelkreises die eigentlich gewünschte Gegenkopplung zu einer Mitkopplung. Jetzt kann man diesen Amplitudenfaktor als eine Größe auffassen, so wie es in der Rechnung für 1.5 gemacht wurde oder, wie es bei 1.4 passierte, man teilt diesen Gesamtterm in zwei Faktoren auf. Das Bode-Diagramm wurde augenscheinlich aufgezeichnet für die Funktion
$$ F(s) = [mm] \bruch{1}{s (s+4)^2} [/mm] $$ und hieraus liest man die Amplitudenreserve von 16 dB ab. Nun muss man noch den konstanten Verstärkungsfaktor von 8 berücksichtigen und so kommt man zu Deinem Ausdruck für [mm] K_{R,krit} [/mm], wie Du ihn in der Lösung für 1.4 findest.
Viele Grüße,
Infinit  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]