matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationKrümmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Krümmung
Krümmung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Di 02.06.2009
Autor: Phoenix1605

Aufgabe
Finden Sie den Punkt mit der stärksten Krümmung der Funktion y=ln x und berechnen sie den Schmiegekreis in diesem Punkt.

Hallo,
ich habe versucht die Aufgabe zu lösen, stehe aber absolut auf der Leitung. Die Ableitungen sind kein Problem.
f'(x)=1/x
f''(x)=-1/x²
f'''(x)=2/x³
Aber wie gehts jetzt weiter? Die Formeln für Krümmung, Radius x0 und y0 kenne ich. Aber ohen den Punkt komme ich da auch nicht weiter.

Vielen Dank für eure Hilfe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Krümmung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Di 02.06.2009
Autor: generation...x

Die Formel für die Krümmung des Graphen der Funktion lautet ja:

[mm]\kappa = \left|\bruch{f''(x)}{\left(1 + f'(x)^2\right)^{3/2}}\right|[/mm]

Einsetzen ergibt:

[mm]\kappa(x) = \left|-\bruch{\bruch{1}{x^2}}{\left(1 + \bruch{1}{x^2}\right)^{3/2}}\right| = \left|\bruch{\bruch{1}{x^2}}{\left(\bruch{x^2+1}{x^2}\right)^{3/2}}\right| = \left|\bruch{x}{\left(x^2+1\right)^{3/2}}\right| [/mm]

Wir untersuchen nur x>0, können den Betrag also weglassen. Um den Maximalwert zu finden, würde ich jetzt mal ableiten...

Bezug
                
Bezug
Krümmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:02 Mi 03.06.2009
Autor: Phoenix1605

Danke für die schnelle Antwort.

Ich habe versucht K abzuleiten.
Für den Nenner habe ich die Kettenregel genommen und dann alles mit Quotientenregel abgeleitet.

Mein Ergebnis für [mm] K'=\bruch{(x^2+1)-3x^2}{(x^2+1)^\bruch{5}{2}} [/mm]

Ist das soweit richtig?

Habe dann K' = 0 gesetzt. bzw. nur den Zähler. und dann kommt für [mm] x=\pm\wurzel{\bruch{1}{2}} [/mm] raus.

Bezug
                        
Bezug
Krümmung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:16 Mi 03.06.2009
Autor: steppenhahn

Hallo!

> Mein Ergebnis für
> [mm]K'=\bruch{(x^2+1)-3x^2}{(x^2+1)^\bruch{5}{2}}[/mm]
>  
> Ist das soweit richtig?

Ja, das ist richtig [ok].
  

> Habe dann K' = 0 gesetzt. bzw. nur den Zähler. und dann
> kommt für [mm]x=\pm\wurzel{\bruch{1}{2}}[/mm] raus.

Darauf komme ich auch :-). Achtung: Natürlich ist nur das positive Ergebnis $x [mm] =\wurzel{\bruch{1}{2}}$ [/mm] gültig, weil wir ja vorher schon x > 0 angenommen haben.

Viele Grüße, Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]