matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenKrümmung ln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Krümmung ln
Krümmung ln < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmung ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mo 30.04.2012
Autor: testtest

Aufgabe
Für welchem Punkt P ist der Betreag der Krümmung ein Maximum?
f(x)=lnx

Also als erte die die Krümmung bestimmen:

k(x) = [mm] \bruch{-x^{-2}}{(1+x^{-2})^{\bruch{3}{2}}} [/mm]

k'(x)!=0

k'(x)= [mm] \bruch{2x^{-3}\wurzel{(1+x^{-2})^3}-3x^-^5\wurzel{1+x^{-2}}}{(1+x^{-2})^{3}} [/mm]

und jetzt wird es schwer:

Ich behaupte jetzt mal, dass
[mm] (1+x^{-2})^{3} [/mm] = [mm] 1+\bruch{3}{x^2}+\bruch{3}{x^4}+\bruch{1}{x^6} [/mm]
niemals zu null werden kann.

Ist ja schon mal gut.

Aufjedenfall habe ich es dann mit dem Satz des Nullproduktes versucht:

[mm] 2x^{-3}\wurzel{(1+x^{-2})^3}-3x^-^5\wurzel{1+x^{-2}} [/mm] =
[mm] \wurzel{(1+x^{-2})}*(2x^{-3}\wurzel{(1+x^{-2})^2}-3x^-^5 [/mm]

was auch dazu für das [mm] wurzel{(1+x^{-2})} [/mm] nicht zu Null werden kann.

[mm] x^{-3} [/mm] ausklammern brachte entsprechend auch keinen Erfolg.

Die exkate Lösung ist [mm] \bruch{1}{\wurzel{2}} [/mm]

Wie kommt man auf die Lösung?

        
Bezug
Krümmung ln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Mo 30.04.2012
Autor: leduart

Hallo
du hast $ [mm] 2x^{-3}\wurzel{(1+x^{-2})^2}-3x^-^5 [/mm] =0$ mult mit [mm] x^5 [/mm] da x=0 ja keine Nst ist, lass die Wurzel aus quadrat weg und du hast ne sehr einfache Gl.
Gruss leduart


Bezug
                
Bezug
Krümmung ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Di 01.05.2012
Autor: testtest

okay habe ich gemacht

[mm] 2x^2\wurzel{(1-x^-^2)^2}=3 [/mm]

aber die Begründung weshalb ich die Wurzel weglassen kann, verstehe ich noch nicht ganz.

[mm] 2x^2=3 [/mm]  ->  [mm] x=\pm\wurzel{\bruch{3}{2}} [/mm]

was bekanntlich nicht die richtige Lösung ist.

Wo hält sich der Fehler versteckt?

Bezug
                        
Bezug
Krümmung ln: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Di 01.05.2012
Autor: fred97


> okay habe ich gemacht
>  
> [mm]2x^2\wurzel{(1-x^-^2)^2}=3[/mm]


Da sollte stehen: [mm]2x^2\wurzel{(1+x^{-2})^2}=3[/mm]


>  
> aber die Begründung weshalb ich die Wurzel weglassen kann,
> verstehe ich noch nicht ganz.

Leduart meinte: [mm] \wurzel{(1+x^{-2})^2}=1+x^{-2} [/mm]

FRED


>  
> [mm]2x^2=3[/mm]  ->  [mm]x=\pm\wurzel{\bruch{3}{2}}[/mm]

>  
> was bekanntlich nicht die richtige Lösung ist.
>  
> Wo hält sich der Fehler versteckt?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]