matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenKrümmungsradius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Krümmungsradius
Krümmungsradius < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmungsradius: Aufgabe
Status: (Frage) überfällig Status 
Datum: 13:29 Di 17.11.2009
Autor: mongoo2

Hallo zusammen

Was muss ich bei der folgenden Aufgabe machen??? Ich habe wirklich keine Ahnung!

1. Krümmungsradius, Zentrum der Krümmung einer Kurve in einem Punkt
Angenommen, ein Punkt bewege sich in der Ebene und gehorche dabei einem Gesetz, das durch ein Paar zeifach differenzierbarer Koordinatenfunktionen der Zeit x=x(t) und y=y(t) gegeben wird. Dabei beschreibt der Punkt eine Kurve, die in der parametrischen Form x=x(t) und y=y(t) gegeben ist. Ein Spezialfall einer derartigen Defintition ist der des Graphen einer Funktion y=f(x), wobei man x=t und y=f(x) setzt. Wir suchen nach einer Zahl, die die Krümmung der Kurve in einem Punkt charakterisiert. Denn der Kehrwert des Krümmungsradius eines Kreises dient als Anzeichen für das Ausmass der Krümmung des Kreises.
Wir werden von diesem Zusammenhang Gebrauch machen.

a) Finde die Tangente und die normale Komponenten [mm] a_{t} [/mm] und [mm] a_{n} [/mm] der Beschleunigung a=(x''(t),''(t)) des Punktes, d.h., schreibe a als die Summe [mm] a_{t} [/mm] + [mm] a_{n}, [/mm] wobei [mm] a_{t} [/mm] zum Geschwindigkeitsvektor v(t)=(x'(t),y'(t)) kollinear ist. Daher zeigt [mm] a_{t} [/mm] entlang der Tangente der Trajektorie und [mm] a_{n} [/mm] zeigt entlang der Normalen an die Trajektorie.

Liebe Grüsse

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Krümmungsradius: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Do 19.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]