matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesKrümmungsverhalten v. Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Krümmungsverhalten v. Funktion
Krümmungsverhalten v. Funktion < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmungsverhalten v. Funktion: Rechtskrümmung ohne vorg. Funk
Status: (Frage) beantwortet Status 
Datum: 11:13 Di 29.10.2013
Autor: kathrinhpunkt

Aufgabe
Der Graph einer Funktion f(x) ist im Intervall [1;2] rechtsgekrümmt. Vergleichen Sie den Anstieg der Tangenten an den Stellen x1 = 1 und x2 = 1,5 und x3 = 2!

Wie soll ich hier anfangen? Meine Idee ist es erst einmal die Funktion zu berechnen. Aber wie? Ich habe ja nur einen Punkt vorgegeben.
Oder muss ich hier ganz anders vorgehen?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Krümmungsverhalten v. Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Di 29.10.2013
Autor: Al-Chwarizmi


> Der Graph einer Funktion f(x) ist im Intervall [1;2]
> rechtsgekrümmt. Vergleichen Sie den Anstieg der Tangenten
> an den Stellen x1 = 1 und x2 = 1,5 und x3 = 2!
>  Wie soll ich hier anfangen? Meine Idee ist es erst einmal
> die Funktion zu berechnen. Aber wie? Ich habe ja nur einen
> Punkt vorgegeben.
> Oder muss ich hier ganz anders vorgehen?


Hallo kathrinhpunkt

                  [willkommenmr]

vorgegeben ist nicht einmal ein Punkt, sondern nur
die Aussage, dass f über einem bestimmten Inter-
vall rechtsgekrümmt sei. Ferner ist die Rede von den
3 Stellen [mm] x_i [/mm] am linken Rand, in der Mitte und am
rechten Rand des Intervalls. Der verlangte Vergleich
kann also nur z.B. in Ungleichungen bestehen.

Eigentlich kann man die Lösung mit Hilfe einer
einfachen Skizze (Graph mit 3 Tangenten) ganz
leicht ermitteln.

Ich denke aber, dass du (zusätzlich zur allgemeinen
Aussage) auch ein Beispiel mit einer konkret gewählten
Funktion mit den gewünschten Eigenschaften liefern
könntest.

LG ,   Al-Chwarizmi






Bezug
        
Bezug
Krümmungsverhalten v. Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Di 29.10.2013
Autor: fred97


> Der Graph einer Funktion f(x) ist im Intervall [1;2]
> rechtsgekrümmt. Vergleichen Sie den Anstieg der Tangenten
> an den Stellen x1 = 1 und x2 = 1,5 und x3 = 2!
>  Wie soll ich hier anfangen? Meine Idee ist es erst einmal
> die Funktion zu berechnen. Aber wie? Ich habe ja nur einen
> Punkt vorgegeben.
> Oder muss ich hier ganz anders vorgehen?

Ich gehe davon aus, dass f auf [1,2] mindestens 2-mal differenzierbar ist.

Der Graph von f ist im Intervall [1,2] rechtsgekrümmt. Das bedeutet:

     f''(x)<0 für jedes x [mm] \in [/mm] [1,2].

Damit ist f' auf [1,2] streng monoton fallend. Somit gilt für a,b [mm] \in [/mm] [1,2] mit a<b:

      f'(a)>f'(b).

Hilft das ?

FRED

>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]