Kugelflaechenfunktionen < Maple < Mathe-Software < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 09:36 Mo 26.09.2011 | Autor: | AT-Colt |
Hallo Leute,
ich werde hier noch wahnsinnig. Bei mir produziert Maple gerade Mist und ich weiss nicht, woran es liegt. Hier mal das, was ich betrachten will:
Ich habe einen Einheitsvektor in Richtung [mm] $\mathbf{\hat{r}}(\theta,\phi)$ [/mm] gegeben, wobei [mm] $\theta$ [/mm] der Winkel ist, den der Vektor mit der z-Achse einschliesst und [mm] $\phi$ [/mm] der Winkel, den die Projektion des Vektors auf die xy-Ebene mit der x-Achse einschliesst.
Damit muesste der Vektor lauten:
[mm] $\mathbf{\hat{r}}(\theta,\phi)=\vektor{\cos(\phi)\sin(\theta) \\ \sin(\phi)\sin(\theta) \\ \cos(\theta)}$
[/mm]
Ich weiss, dass ich jede Komponente auch mit Spherical Harmonics/Kugelflaechenfunktionen darstellen kann als z.B.
[mm] $\cos(\phi)\sin(\theta) [/mm] = [mm] c_{1,-1}Y_{1,-1}(\theta,\phi) [/mm] + [mm] c_{1,0}Y_{1,0}(\theta,\phi) [/mm] + [mm] c_{1,1}Y_{1,1}(\theta,\phi)$
[/mm]
Ich weiss, dass [mm] $c_{1,i}$ [/mm] proportional zu [mm] $\sqrt{\frac{2\pi}{3}}$ [/mm] und reell ist [mm] ($c_{1,0} [/mm] = 0$) und dass [mm] $c_{2,i}$ [/mm] ebenfalls proportional zu dieser Zahl ist, aber rein imaginaer.
Jetzt wollte ich mit Maple diese Faktoren ausrechnen (um sie spaeter weiterzubenutzen), jedoch erhalte ich (modulo Numerik) fuer die Eingabe
c[1,-1]:=evalf(int(int(cos(phi)*sin(theta)*conjugate(SphericalY(1,-1,theta,phi))*sin(theta),theta=0..Pi),phi=0..2*Pi));
c[1, 0]:=evalf(int(int(cos(phi)*sin(theta)*conjugate(SphericalY(1, 0,theta,phi))*sin(theta),theta=0..Pi),phi=0..2*Pi));
c[1, 1]:=evalf(int(int(cos(phi)*sin(theta)*conjugate(SphericalY(1, 1,theta,phi))*sin(theta),theta=0..Pi),phi=0..2*Pi));
die ja die Projektion der einzelnen Komponenten von [mm] $\mathbf{\hat{r}}$ [/mm] auf die Spherical Harmonics ist,
[mm] $\sqrt{\frac{2\pi}{3}}i$,$0$,$\sqrt{\frac{2\pi}{3}}i$.
[/mm]
Das sind aber rein imaginaere Zahlen.
Benutze ich statt cos(phi) in der Eingabe sin(phi), passt das Ergebnis, aber in der Maple-Hilfe sind die Kugelkoordinaten genau so gewaehlt, wie ich sie angegeben habe.
Dennoch, prinzipiell muesste ich ja, wenn ich die hier ausgerechneten c[1,i] an die entsprechenden Spherical Harmonics multipliziere und das ganze aufaddiere, wieder [mm] $\cos(\phi)\sin(\theta)$ [/mm] erhalten. Aber auch das ist nicht der Fall.
Wolfram Alpha liefert die erwarteten Ergebnisse, aber darin laesst sich nicht so komfortabel Rechnen.
Sieht jemand zufaellig den Fehler?
Viele Gruesse,
AT-Colt
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:20 Fr 30.09.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|