matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKugelgleichung aus Punkten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Kugelgleichung aus Punkten
Kugelgleichung aus Punkten < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugelgleichung aus Punkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 Sa 01.04.2006
Autor: wonderwall

Aufgabe
Ermittle die Allg. Gleichung der durch die Punkte A, B, C, gehenden Kugel v Radius r.
A(4/8/5), B(7/5/5), C(7/8/2), r=9

Also ich würde ein Gleichungssytem machen u versuchen zu eliminieren, aber ich check das nicht, weil sich immer nur ein Binom streichen läßt u ich dann wieder 2 Unbekannte hab. *argh*
Was würdet ihr machen?

Danke

lg ww

        
Bezug
Kugelgleichung aus Punkten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Sa 01.04.2006
Autor: Walde

Hi wonder,

also in die Koordinatengleichung der Kugel

[mm] (x_1-m_1)^2+(x_2-m_2)^2+(x_3-m_3)^2=r^2 [/mm]

mit Mittelpunkt [mm] M(m_1|m_2|m_3) [/mm]

musst du, hätte ich jetzt auch gesagt, nur jeden deiner Punkte einsetzen und das Gleichungssystem lösen. Wenns nicht klappt weiss ich jetzt auch nicht. Schreib's vielleicht mal hin, dann sieht man vielleicht wo's hängt.

L G walde

Bezug
        
Bezug
Kugelgleichung aus Punkten: weitere Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Sa 01.04.2006
Autor: Disap

Hallo wonderwall.

> Ermittle die Allg. Gleichung der durch die Punkte A, B, C,
> gehenden Kugel v Radius r.
>  A(4/8/5), B(7/5/5), C(7/8/2), r=9
>  Also ich würde ein Gleichungssytem machen u versuchen zu

Richtig!

> eliminieren, aber ich check das nicht, weil sich immer nur
> ein Binom streichen läßt u ich dann wieder 2 Unbekannte
> hab. *argh*
> Was würdet ihr machen?  

Etwas ähnliches, stell die drei Gleichungen für die Punkte einmal auf, die erste (für A) lautet

[mm] (4-m_1)^2+(8-m_2)^2+(5-m_3)^2 [/mm] = [mm] 9^2 [/mm]

Das machst du für Punkt B und C, du erhälst Gleichung
I
II
III

Und ohne erst einmal die Klammern auszumultiplizieren, setzt du jede Gleichung mit der anderen gleich.

I = II

I = III

II= III

Und nun solltest du dieses einfach durch Additions-/Subtraktionsverfahren lösen können (evtl. auch mit Gauss).

> Danke
>  
> lg ww

Viele Grüße
Disap

Bezug
                
Bezug
Kugelgleichung aus Punkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Sa 01.04.2006
Autor: wonderwall

auch wenn ich das nun so probiere, dann kann ich zwar zb I=II mit II=III subtrahieren, aber es bleiben wieder zuviele unbekannte übrig

beim ersten bleibt übrig:
(4-x)²-(7-x)²+(8-y)²-(5-y)²=(5-y)²-(8-y)²+(5-z)²-(2-z)²
bei I=III u II=III subtrahiert dann das:
(4-x)²-(7-x)²+(8-y)²-(5-y)²=0
beide ergebnisse wieder subtrahiert, ergeben:
0=-(5-y)²+(8-y)²-(5-z)²+(2-z)²

und dann gehts ja nicht mehr weiter

wo is da mein fehler? *schluchz*

lg ww

Bezug
                        
Bezug
Kugelgleichung aus Punkten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Sa 01.04.2006
Autor: riwe

wo liegt dein problem?
aus I und II ergibt sich x = y - 1
aus II und III analog z = y - 3
das in I eingesetzt führt auf die quadratische gleichung in y:
[mm] y^{2}-14y+24 [/mm] =0  [mm] \Rightarrow y_1= [/mm] 12 und [mm] y_2 [/mm] = 2, und daraus [mm] M_2(1/2/-1). [/mm]

alternativer lösungsweg wäre: die beiden mittelsenkrechten ebenen durch AB und BC erstellen und daraus die schnittgerade bestimmen zu [mm] \vec{x}=\vektor{2\\3\\0}+t\vektor{ 1\\1\\1}. [/mm] auf dieser geraden muß der mittelpunkt liegen, das gibt
[mm] (\vektor{7\\5\\5}-\vektor{2\\3\\0}-t\vektor{1\\1\\1})^{2}=81 \Rightarrow [/mm]
[mm] t_1=9 [/mm] und [mm] t_2=-1, t_2 [/mm] liefert wieder [mm] M_2(1/2/-1). [/mm]


Bezug
                                
Bezug
Kugelgleichung aus Punkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Mo 03.04.2006
Autor: wonderwall

Hi

mein Problem ist das, ich wenn ich nun für x u z einsetze ich folgenden Gleichung bekomme:

(4-(y-1))²+(8-y)²+(5-(y-3)²=81
(5-y)²+64+y²-16y+(8-y)²=81
25-10y+y²+64-16y+y²+64-16y+y²=81
2y²-42y+72=0/:2
y²-21y+36=0

und dann kommt was ganz "grausliches" raus....ich find den fehler nicht, ihr vielleicht?

lg ww

Bezug
                                        
Bezug
Kugelgleichung aus Punkten: Rechenfehler
Status: (Antwort) fertig Status 
Datum: 18:51 Mo 03.04.2006
Autor: Loddar

Hallo wonderwall!


Sieh' Dir mal beim Zusammenfassen die [mm] $y^2$-Terme [/mm] an ... das sind insgesamt [mm] $\red{3}*y^2$ [/mm] (und nicht nur [mm] $2*y^2$) [/mm] !


Gruß
Loddar


Bezug
                                                
Bezug
Kugelgleichung aus Punkten: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 Mo 03.04.2006
Autor: wonderwall

Hola

mah, danke, manchmal ghör ich echt ghaut :schaem:

dann passt ja eh alles, kommt davon wenn ich ganz verzweifelt rechne *upsi*

danke

lg ww

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]