matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeKurvenanpassung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Kurvenanpassung
Kurvenanpassung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenanpassung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:55 Do 03.09.2009
Autor: Annsi

Aufgabe
Gegeben sind die Funktionen [mm] f_{k} [/mm] (x) = [mm] x^{4} [/mm] - [mm] kx^{3} [/mm]  ,k [mm] \in \IR [/mm] .
Geben Sie die Wendepunkte an.
Welcher von allen Wendepunkten hat vom Punkt P (0|2) minimalen Abstand.

Also die Wendepunkte schnell ausgerechnet:
2.  Ableitung gleich Null setzen
x = [mm] \bruch{1}{3k} [/mm]  und y = [mm] \bruch{2}{27k^{2}} [/mm]
Nun rechne ich die Ortskurve der Wendepunkte aus
x nach k umstellen  k = [mm] \bruch{1}{3x} [/mm] und setze den Wert für k in den y-Wert der Wendepunkte ein
y = [mm] \bruch{2}{27 \* \bruch{1}{3x} ^{2} } [/mm]
  = [mm] \bruch{2}{3} x^{2} [/mm]
Ortskurve:   O(x) [mm] =\bruch{2}{3}x^{2} [/mm]

Ich würde jetzt (für den 2. Aufgabenteil) einen Kreis um den Punkt P (0|2) legen und da, wo der Kreis die Innenseite der Ortskurve (Parabel) berührt, ist die Stelle des Wendepunktes mit dem minimalsten Abstand zu P.
Wie kann ich das nun errechnen?

Im Vorraus schonmal vielen Dank!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kurvenanpassung: Wendestellen falsch
Status: (Antwort) fertig Status 
Datum: 18:59 Do 03.09.2009
Autor: Loddar

Hallo Annsi!


Wie lauten denn Deine ersten beiden Ableitungen? Denn ich habe bei den Wendepunktkandidaten andere Werte heraus mit:
[mm] $$x_1 [/mm] \ = \ 0 \ \ \ [mm] \text{und} [/mm] \ \ \ [mm] x_2 [/mm] \ = \ [mm] \bruch{k}{2}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Kurvenanpassung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Do 03.09.2009
Autor: Annsi

1. Ableitung  f´(x)= [mm] 2x-3kx^{2} [/mm]
2. Ableitung f´´(x)= x-6kx

Bezug
                        
Bezug
Kurvenanpassung: andere Ableitungen
Status: (Antwort) fertig Status 
Datum: 19:09 Do 03.09.2009
Autor: Loddar

Hallo Annsi!


Für die oben genannte Funktion mit [mm] $f_k(x) [/mm] \ = \ [mm] x^{\red{4}}-k*x^3$ [/mm] erhalte ich:

[mm] $$f_k'(x) [/mm] \ = \ [mm] \red{4}*x^{\red{3}}-3k*x^2$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
Kurvenanpassung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Do 03.09.2009
Autor: Annsi

Oh mist! Vielen Dank! Ich habe eine falsche Aufgabe in  meinen Unterlagen berechnet.
Wie du sagtest ist ein Wendepunkt bei x = [mm] \bruch{k}{2} [/mm] der y-Wert dazu wäre dann y= - [mm] \bruch{k^{4}}{16} [/mm]

x stelle ich nach k um. Der k-Wert wäre dann k= 2x dann k in y einsetzten
y= - [mm] \bruch{(2x)^{4}}{16} [/mm]
[mm] \Rightarrow [/mm] y= - [mm] \bruch{16x^{4}}{16} [/mm]
demnach wäre die Funktion von der Ortskurve O(x)= [mm] -x^{4} [/mm]

Und dann muss der Wendepunkt einen minimalen Abstand zu P (0|-2) haben.

Weiter weiß ich trotzdem nicht.

Bezug
                                        
Bezug
Kurvenanpassung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Do 03.09.2009
Autor: M.Rex

Hallo

Ich würde direkt den Abstand A(k) der Wendepunkte [mm] W_{k}\left(-\bruch{k}{2};-\bruch{k^{4}}{16}\right) [/mm] zu P(0;2) bestimmen.

Es gilt ja mit dem Satz des Pytagoras:

[mm] A_{k}^{2}=\left(\underbrace{-\bruch{k}{2}+0}_{\text{Differenz der x-Werte}}\right)^{2}+\left(\underbrace{2-\bruch{k^{4}}{16}}_{\text{Differenz der y-Werte}}\right)^{2} [/mm]
[mm] =\bruch{k^{2}}{4}+4-\bruch{k^{4}}{4}+\bruch{k^{8}}{256} [/mm]

Und von dieser Funktion suchst du jetzt das Minimum.

Marius

P.S.: Ich habe deine Werte für [mm] W_{k} [/mm] jetzt nicht kontrolliert.

Bezug
                                                
Bezug
Kurvenanpassung: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 20:27 Do 03.09.2009
Autor: zetamy

Hallo,

habe einen kleinen Fehler bei der Auswertung der binomischen Formel entdeckt. Es muss heißen

> [mm]\bruch{k^{2}}{4}+4-2\cdot 2\cdot\bruch{k^{4}}{16}+\bruch{k^{8}}{256} = \bruch{k^{2}}{4}+4-\bruch{k^{4}}{4}+\bruch{k^{8}}{256}[/mm]


Gruß,
zetamy

Bezug
                                                        
Bezug
Kurvenanpassung: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 20:45 Do 03.09.2009
Autor: M.Rex


> Hallo,
>  
> habe einen kleinen Fehler bei der Auswertung der
> binomischen Formel entdeckt. Es muss heißen
>  
> > [mm]\bruch{k^{2}}{4}+4-2\cdot 2\cdot\bruch{k^{4}}{16}+\bruch{k^{8}}{256} = \bruch{k^{2}}{4}+4-\bruch{k^{4}}{4}+\bruch{k^{8}}{256}[/mm]
>  
>
> Gruß,
>  zetamy

Hallo Zetamy

Danke für den Hinweis, ich habs korrigiert.

Marius


Bezug
                                                
Bezug
Kurvenanpassung: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 Do 03.09.2009
Autor: Annsi

Vielen Dank für die Hilfe!!!

Annsi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]